Eviews应用时间序列分析实验手册-最新年文档 下载本文

内容发布更新时间 : 2024/12/27 16:11:12星期一 下面是文章的全部内容请认真阅读。

表示不包含截距项

图2:单位根检验的方法选择

图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

二、纯随机性检验

计算Q统计量,根据其取值判定是否为纯随机序列。

例2.3的自相关图中有Q统计量,其P值在K=6、12的时候均比较大,不能拒绝原假设,认为 该序列是白噪声序列。

另外,小样本情况下,LB统计量检验纯随机性更准确。

第三章 平稳时间序列建模实验教程

一、模型识别

1.打开数据

图1:打开数据

2.绘制趋势图并大致判断序列的特征 图2:绘制序列散点图

图3:输入散点图的两个变量 图4:序列的散点图 3.绘制自相关和偏自相关图

图1:在数据窗口下选择相关分析 图2:选择变量 图3:选择对象 图4:序列相关图

4.根据自相关图和偏自相关图的性质确定模型类型和阶数

如果样本(偏)自相关系数在最初的d阶明显大于两倍标准差范围,而后几乎95%的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。这时,通常视为(偏)自相关系数截尾。截尾阶数为d。 本例:

? 自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表

明序列明显地短期相关。但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾

? 偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏

自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾 ? 所以可以考虑拟合模型为AR(1) 自相关系数 拖尾 Q阶截尾 拖尾 偏相关系数 P阶截尾 拖尾 拖尾 模型定阶 AR(p)模型 MA(q)模型 ARMA(P,Q)模型 具体判别什么模型看书58到62的图例。

二、模型参数估计

根据相关图模型确定为AR(1),建立模型估计参数

在ESTIMATE中按顺序输入变量cx c cx(-1)或者cx c ar(1) 选择LS参数估计方法,查看输出结果,看参数显著性,该例中两个参数都显著。

细心的同学可能发现两个模型的C取值不同,这是因为前一个模型的C为截距项;后者的C则为序列期望值,两个常数的含义不同。

图1:建立模型

图2:输入模型中变量,选择参数估计方法 图3:参数估计结果 图4:建立模型

图5:输入模型中变量,选择参数估计方法 图6:参数估计结果

三、模型的显著性检验

检验内容:

整个模型对信息的提取是否充分;

参数的显著性检验,模型结构是否最简。 图1:模型残差

图2:残差的平稳性和纯随机性检验

对残差序列进行白噪声检验,可以看出ACF和PACF都没有显著异于零,Q统计量的P值都远远大于0.05,因此可以认为残差序列为白噪声序列,模型信息提取比较充分。

常数和滞后一阶参数的P值都很小,参数显著;因此整个模型比较精简,模型较优。

四、模型优化

当一个拟合模型通过了检验,说明在一定的置信水平下,该模型能有效地拟合观察值序列的波动,但这种有效模型并不是唯一的。

当几个模型都是模型有效参数显著的,此时需要选择一个更好的模型,即进行优化。 优化的目的,选择相对最优模型。 优化准则:

最小信息量准则(An Information Criterion) ? 指导思想

? 似然函数值越大越好 ? 未知参数的个数越少越好

? AIC准则的缺陷

在样本容量趋于无穷大时,由AIC准则选择的模型不收敛于真实模型,它通常比真实模型所含的未知参数个数要多

但是本例中滞后二阶的参数不显著,不符合精简原则,不必进行深入判断。

第四章 非平稳时间序列的确定性分析

第三章介绍了平稳时间序列的分析方法,但是自然界中绝大多数序列都是非平稳的,因而对非平稳时间序列的分析跟普遍跟重要,人们创造的分析方法也更多。这些方法分为确定性时序分析和随机时序分析两大类,本章主要介绍确定性时序分析方法。

一个序列在任意时刻的值能够被精确确定(或被预测),则该序列为确定性序列,如正弦序列、周期脉冲序列等。而某序列在某时刻的取值是随机的,不能给以精确预测,只知道取某一数值的概率,如白噪声序列等。Cramer分解定理说明每个序列都可以分成一个确定序列加一个随机序列,平稳序列的两个构成序列均平稳,非平稳时间序列则至少有一部分不平稳。本章先分析确定性序列不平稳的非平稳时间时间序列的分析方法。

确定性序列不平稳通常显示出非常明显的规律性,如显著趋势或者固定变化周期,这种规律性信息比较容易提取,因而传统时间序列分析的重点在确定性信息的提取上。

常用的确定性分析方法为因素分解。分析目的为:①克服其他因素的影响,单纯测度某一个确定性因素的影响;②推断出各种因素彼此之间作用关系及它们对序列的综合影响。

一、趋势分析

绘制序列的线图,观测序列的特征,如果有明显的长期趋势,我们就要测度其长期趋势,测度方法有:趋势拟合法、平滑法。 (一) 趋势拟合法 1.线性趋势拟合

例1:以澳大利亚政府1981-1990年每季度消费支出数据为例进行分析。 图1:导入数据

图2:绘制线图,序列有明显的上升趋势

长期趋势具备线性上升的趋势,所以进行序列对时间的线性回归分析。 图3:序列支出(zc)对时间(t)进行线性回归分析 图4:回归参数估计和回归效果评价

可以看出回归参数显著,模型显著,回归效果良好,序列具有明显线性趋势。 图5:运用模型进行预测

图6:预测效果(偏差率、方差率等)

图7:绘制原序列和预测序列的线图

图8:原序列和预测序列的线图 图9:残差序列的曲线图

可以看出残差序列具有平稳时间序列的特征,我们可以进一步检验剔除了长期趋势后的残差序列的平稳性,第三章知识这里不在叙述。

2.曲线趋势拟合

例2:对上海证券交易所1991.1-2019.10每月月末上正指数序列进行拟合。 图1:导入数据 图2:绘制曲线图

可以看出序列不是线性上升,而是曲线上升,尝试用二次模型拟合序列的发展。