内容发布更新时间 : 2025/4/3 22:13:08星期一 下面是文章的全部内容请认真阅读。
线性代数练习题(行列式)A
一、填空题
3?6236? 1、2?6?2300 2、
040030020010? 00)?_____________ 3、N(6312544、四阶行列式det(aij)的反对角线元素之积(即a14a23a32a41)一项的符号为 12?35. 行列式2?10中元素0的代数余子式的值为_______
34?2二、选择题 1、a11a?( )
Da?1
Aa?1B?a?1C1?a0101?( ) 3、11?a111?aA1?aBaCa?1D(1?a)(1?a)
35、若41
1x0x0?0,则x?( ) x1
Ax?0且x?2Bx?0或x?2Cx?0Dx?2
11106、11011011?( )
0111A2B3C?3D?1
1117、xyz?( ) x2y2z2A(y?x)(z?x)(z?y)BxyzC(y?x)(z?x)(z?y)D
413?2333三、设行列式 D??6?1207,不计算Aij而直接证明:129?2 A41?A42?A43?2A44
x?y?z2
线性代数练习题(行列式)B
一、填空题
1、 设Aij是n阶行列式中元素aij的代数余子式,则
n?ak?1ikAjk=
123456782、 设Ai3(i?1,2,3,4)是行列式中元素ai3的代数余子式,
23486789A13?5A23?2A33?6A43?
3、 各列元素之和为零的n阶行列式之值等于 4、 设A为m阶方阵,B为n阶方阵,则
A00B? ;
0BA0?
5、 设Aij(i,j?1,2)为行列式D?21中元素aij的代数余子式,则31A11A126、 方程
A21? A22x?103x?1?2x?2x?12?3?61?4的根为
?x1?2x2?x3?0?7、 已知齐次线性方程组?2x1?x2?x3?0有非零解,则??
?3x?4x??x?023?18、 若a11,a22,a33,a44都不等于零,则方程组
?a11x1?a12x2?a13x3?a14x4?b1?a22x2?a23x3?a24x4?b2?有 解。 ?a33x3?a34x4?b3??a34x4?b4?
3
二、选择题 1、若
a11a12?ax?ax?0 ( ) ?0,则方程组?111122a21a22?a21x1?a22x2?0A 无解 B 有无穷多解 C 有唯一解 D 不一定
a112、0?10?0的充分必要条件是( )
4aaAa?2Ba??2Ca?2Da?2
?3、211?0?0的充分必要条件是( ) ?112A??2B???2C??0D??3,???2
a104、4阶行列式
0b40a2b300b2a30b10的值等于( ) 0a4Aa1a2a3a4?b1b2b3b4Ba1a2a3a4?b1b2b3b4C(a1a2?b1b2)(a3a4?b3b4)D(a2a3?b2b3)(a1a4?b1b4)a115、若D?a21
a12a22a32a13a23a33a31( )
2a11?M?0,而??a312a212a12a322a222a13a33,则??2a23A2MB?2MC4MD?4M
?3x??y?z?0?6、如果?4y?z?0有非零解,则??( )
??x?5y?z?0? 4
A0B1C?1D?3
?kx?z?0?7、当k?( )时,?2?ky?z?0只有零解
?kx?2y?z?0?A0B?1C2D?2
三、计算题
101、0?1?1?1?11
a1b?1c?1 d0xb 2、b?baa?xa?bx???bb?aaa?x5