牛顿环测量曲率半径实验报告记录 下载本文

内容发布更新时间 : 2024/11/14 13:10:17星期一 下面是文章的全部内容请认真阅读。

和级数k的平方根成正比,即随着k的增大,条纹越来越细。

同理,如果rk是第k级明纹,则由式(1)和(2)得

(8)

(9)

代入式(5),可以算出

11

(10)

由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。

在实验中,暗纹位置更容易确定,所以我们选用式(8)来进行计算。 在实际问题中,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。这样一来,干涉环的圆心就很难确定,rk就很难测准,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以公式(8)不能直接用于实验测量。

在实验中,我们选择两个离中心较远的暗环,假定他们的级数为m和n,测出它们的直径dm = 2rm,dn = 2rn,则由式(8)有

12

由此得出

(11)

从这个公式可以看出,只要我们准确地测出某两条暗纹的直径,准确地数出级数m和n之差(m-n)(不必确定圆心也不必确定具体级数m和n),即可求得曲率半径R。

4.实验内容

1. 观察牛顿环

将牛顿环放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。

调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。

2. 测牛顿环半径

13

使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。记录标尺读数。

转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。

3. 重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R

和R的标准差

5.数据处理及结果:

6.实验小结

结论:所用牛顿环半径为1.605m,标准差为94.59mm。 误差分析:主要来源于读数时产生的误差。

在仿真实验中,鼠标点击旋钮时,每次的转动幅度较大,叉丝无法准确地与条纹相切,

所以记录数据不准确。

14

建议:对该仿真实验系统进行完善,使得调节旋钮能连续进行,更接近实际,使仿真实验更有实际意义。

7.思考题

1.牛顿环产生的干涉属于薄膜干涉,在牛顿环中薄膜在什么位置?

答:牛顿环的薄膜是介于牛顿环下表面(凸面)与下面的平面玻璃之间的一层空气薄膜。 2.为什么牛顿环产生的干涉条纹是一组同心圆环?

答:干涉时薄膜等厚处光程差相等,产生的干涉现象也相同。而牛顿环的薄膜等厚处相连在空间上是一个圆形,其圆心在凸面与平面的接触点上,所以干涉条纹是一组同心圆。 3.牛顿环产生的干涉条纹在什么位置上?相干的两束光线是哪两束?

答:条纹产生在凸面的表面上。相干的两束光线分别是入射光射到凸透镜的下表面时产生的反射光和被平面镜反射回来照射到凸透镜下表面的光。

4.在牛顿环实验中,如果直接用暗纹公式测平凸透镜凸面的曲率半径,有什么问题? 答:直接用暗纹公式计算曲率半径需要确定某条纹对应的级数。而在实际情况下,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。这样一来,干涉环的圆心就很难确定,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以该公式无法运用。

5.在使用读数显微镜时,怎样判断是否消除了视差?使用时最主要的注意事项是什么? 答:从目镜观测时,前后左右调整眼与目镜的位置,若看到的叉丝与图像之间没有相对移动,则视察消除。使用时需避免损坏目镜,先让物镜靠近牛顿装置的上表面,然后用眼睛看着显微镜,同时由下向上调节筒身。

6.在光学中有一种利用牛顿环产生的原理来判断被测透镜凹凸的简单方法:用手轻压牛顿环装置中被测透镜的边缘,同时观察干涉条纹中心移动的方向,中心趋向加力点者为凸透镜,中心背离加力点者为凹透镜。请想一想,这是什么道理

答:根据干涉的原理可知,条纹的位置取决于该位置对应的薄膜厚度,而条纹中心应该是厚度为0的地方。所以,当在某点挤压凸透镜时,凸透镜产生形变,该点空气薄膜厚度减小,且厚度为0处会向该点方向移动,所以条纹中心会趋向加力点。凹透镜现象正好与此相反,所以可以根据这一现象来判断凹凸透镜。

15