内容发布更新时间 : 2024/12/26 23:15:09星期一 下面是文章的全部内容请认真阅读。
【MeiWei_81重点借鉴文档】
四年级下期 第一讲定义新运算
同学们对于“加、减、乘、除”四则运算已经相当熟悉了。为了扩展对运算的认识,在四则运算的基础上,还可以按需要规定新的运算。
例1 设a、b都表示数,规定a△b=3×a-2×b。 (1)求4△3,3△4。
(2)这种运算有“交换律”吗? (3)求(17△6)△2,17△(6△2)。 (4)这种运算有“结合律”吗? (5)如果已知5△b=1,求b。
解:像这样的题目叫做“定义新运算”。这里,“△”当作一种新的运算符号来使用,它的意义是:如等号右端所要求的那样,先求出3×a和2×b的值,再求出3×a与2×b的差。弄清了新定义运算的意义之后,就要严格按照要求进行操作。仍然要先做括号里面的。所以:
(1)4△3=3×4-2×3=12-6=6。3△4=3×3-2×4=9-8=1。
(2)由(1)可知,4△3与3△4的结果不同,所以,这种运算没有“交换律”。
(3)(17△6)△2=(3×17-2×6)△2=(51-12)△2=39△2=3×39-2×2=117-4=113。
17△(6△2)=17△(3×6-2×2)=17△(18-4)=17△14=3×17-2×14=51-28=23。 (4)由(3)可知,(17△6)△2与17△(6△2)的结果不同,所以,这种运算也没有“结合律”。 (5)因为5△b=3×5-2×b=15-2b,而15-2b=1,所以2b=15-1,2b=14,b=7。 通过这个例题使我们认识到,所谓的“新运算”并不神秘,它只不过是对原有的四则运算的一种综合运用而已。在做这类题目时,关键是要弄清楚新运算的意义是什么,并且要严格按照它的意义进行运算。
例2 如果a#b=2×a+3×b,aRb=(a+b)÷2,那么(3R5)#7=?
解:“#”的意义是先求出2×a和3×b,再求出2×a与3×b的和。“R”的意义显然是求a、b的平均数。
因为3R5=(3+5)÷2=4,所以,(3R5)#7=4#7=2×4+3×7=29。
例3 规定:a&b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数。 (1)求1&100的值; (2)已知R&10=75,求R。
解:(1)a+(a+1)+(a+2)+…+(a+b-1) =1+(1+1)+(1+2)+…+(1+100-1) =1+2+3+…+100 =(1+100)×100÷2 =101×100÷2 =5050。
【MeiWei_81重点借鉴文档】
【MeiWei_81重点借鉴文档】
(2)R+(R+1)+(R+2)+…+(R+10-1)=75 10R+(1+2+…+9)=75 10R+45=75 10R=75-45
10R=30
R=30÷10 R=3
例4 羊和狼在一起时,狼要吃掉羊,所以关于羊和狼,我们规定一种运算,用符号△表示:
羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
以上运算的意思是:羊和羊在一起还是羊;狼和狼在一起还是狼;但是狼和羊在一起就只剩下狼了。
小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示: 羊★羊=羊;羊★狼=羊;狼★羊=羊;狼★狼=狼。
这个运算的意思是:羊和羊在一起还是羊;狼和狼在一起还是狼;但是由于羊能战胜狼,当狼和羊在一起时,它便被羊赶走而几只剩下羊了。
对羊或狼,可以用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算。运算的结果或者是羊,或者是狼。那么求下式的结果:
羊△(狼★羊)★羊△(狼★狼)。 解:羊△(狼★羊)★羊△(狼★狼) =羊△羊★羊△狼 =羊★羊△狼 =羊△狼 =狼
练 习 一
1.设a、b都表示数,规定:a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b。试计算:
(1)5△6;6△5。
2.a、b是自然数,规定a*b=a×5+b÷3,求8*9。 3.设a▼b=8×a-18÷b,求7▼9=?
4.规定a☆b=(a+3)×(b-5),求5☆(6☆7)的值。 5.设a▽b=a×b+a-b,试求5▽8。
6.如果规定a※b=13×a-b÷8,那么17※24的最后结果是多少? 7.设a、b都表示数,规定:a△b=2×a+b÷2。求 (1)10△6;(2)7△(4△8)。
8.规定A@B=B×B-A,计算(2@3)@(4@5)。
9.如果规定a△b=4×a+3×b-1,那么5△7和7△5相等吗?
【MeiWei_81重点借鉴文档】
【MeiWei_81重点借鉴文档】
10.对于两个数R、R,R☉R表示R×A-R×2,并且已知82☉65=31。计算: (1)29☉57;(2)38☉(14☉23)。
11.如果3◇4=3+4+5+6=18,6◇5=6+7+8+9+10=40。计算20RR◇6。 12.如果“+、-、×、÷、()”的意义与通常相同,而式子中的数字却不是原来的数字,试问下面的四个算式应该是我们通常的哪四个算式?
(1)8×7=8;(2)7×7×7=6;(3)(7+8+3)×9=39;(4)3×3=3。
第二讲 图形问题(一)
例1 有大、小两个正方形,它们的周长相差16厘米,面积相差80平方厘米,那么小正方形的面积是多少平方厘米?
解:把小正方形重叠地放在大正方形的左上角如图,因为它们的边长相差16÷4=4(厘米),所以图中正方形B的面积是4×4=16(平方厘米),又因为阴影部分的面积是(80-16)÷2=32(平方厘米),所以原来的小正方形(正方形A)的边长是32÷4=8(厘米),面积是8×8=64(平方厘米)。
A B
例2 下面的整个图形是一个边长40厘米的正方形,求图中阴影部分的面积。
解法一:图形的总面积是40×40=1600(平方厘米)。每个小空白正方形的对角线是20厘米,根据“正方形的面积等于对角线的平方除以2”,每个空白小正方形的面积是20×20÷2=200(平方厘米),所以图中阴影部分的面积是1600-200×4=800(平方厘米)。
解法二:仔细观察发现,图中阴影部分的面积与空白部分的面积正好相等,所以,阴影部分的面积是40×40÷2=800(平方厘米)。
例3 如图,阴影部分是一个长方形,它的四周是四个正方形,如果这四个正方形的周长的和是240厘米,面积的和是1000平方厘米,那么阴影部分的面积是多少平方厘米?
解:图中两个小正方形相同,两个大正方形也相同,所以一个小正方形和一个大正方形的面积的和是1000÷2=500(平方厘米)。一个小正方形和一个大正方形的边长的和是240÷2÷4=30(厘米)。在原图的右上角补上一个同样的长方形,得到一个新的正方形如图
这个新正方形的面积是30×30=900(平方厘米),所以一个长方形也就是原图的阴影部分的是(900-500)÷2=200(平方厘米)。 例4 如图,矩形ABCD被分成六个正方形,其中最小的正方形的面积等于1,矩形ABCD的是多少?
A B 【MeiWei_81重点借鉴文档】