卡尔曼滤波原理及其应用资料 下载本文

内容发布更新时间 : 2024/12/27 21:03:00星期一 下面是文章的全部内容请认真阅读。

《最优导航与滤波》报告

题 目:卡尔曼滤波公式推导及应用

学 院:航天学院专 业:导航、制导与控制姓 名:何长久学 号:联系方式:

12SD04015 15124515587

2013年 3月

31 日

卡尔曼滤波公式推导及应用

摘要:卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。它能够从一系列的不完全及包含噪声的测量中,估计动态系统状态。对于解决大部分问题,它是最优、效率最高甚至是最有用的。它的的广泛应用已经超过30年,包括机器人导航、控制,传感器数据融合甚至在局势方面的雷法系统及导航追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 关键字:卡尔曼滤波 导航 机器人

一 Kalmanl滤波器

本质上来讲,滤波就是一个信号处理与变换(去除或减弱不想要的成分,增强所需成分)的过程,这个过程既可以通过硬件来实现,也可以通过软件来实现。卡尔曼滤波属于一种软件滤波方法,基本思想是:以最小均方差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方差的估计。

二 Kalman滤波起源及发展

1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与 Kalman and Bucy (1961)发表.

卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要

求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。

不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没有非线性化这一步骤。在每一定位历元,不敏卡尔曼滤波器按照一套公式产生一系列样点,每一样点均配有一个相应的权重,而这些带权的样点被用来完整地描述系统状态向量估计值的分布情况,它们替代了原先卡尔曼滤波器中的状态向量估计值及协方差。不敏卡尔曼滤器让这些样点一一经历非线性状态方程与测量方程,然后再将这些经非线性变换后的样点按照它们的权重而综合出对当前时刻的系统状态向量估计值。

多态自适应(MMA)卡尔曼滤波器是一种受到广泛关注的滤波器,它由好多个并联、同时运行的卡尔曼滤波器组成。在这组卡尔曼滤波器中,每一个滤波器对未知的滤波参数分别做出相互不同的假设,然后各自按照自己的模型假设进行滤波计算,而多态自适应滤波器最后将它们对系统状态的各个估计值进行加权,并以此作为最优估计值输出。

三、Kalman原理

卡尔曼滤波是基于状态空间方法的一套递推滤波算法,在状态空间方法中,引入了状态变量的概念。实际应用中,可以通过选取合适的状态变量来体现系统的特征、特点和状况的变化。卡尔曼滤波的模型包括状态空间模型和观测模型。状态模型是反映状态变化规律的模型,通过状态方程来描写相邻时刻的状态转移变化规律;观测模型反映了实际观测量与状态变量之间的关系。Kalman滤波问题就是联合观测信息及状态转移规律来得到系统状态的最优估计。

假设动态系统的状态空间模型为

X(t?1)??X(t)??W(t) (2-1)

Y(t)?HX(t)?V(t) (2-2)

其中,

X(t) 系统在时刻t的状态 Y(t) 对状态的观测值 W(t) 系统噪声,方差阵为Q V(t) 观测噪声,方差阵为R