电磁场与电磁波课后习题及答案--第四章习题解答 下载本文

内容发布更新时间 : 2025/1/26 4:37:26星期一 下面是文章的全部内容请认真阅读。

习题解答

4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为

U0,求槽内的电位函数。

解 根据题意,电位?(x,y)满足的边界条件为 ① ?(0,y)??(a,y)?0 ② ?(x,0)?0 ③

?(x,b)?U0

根据条件①和②,电位?(x,y)的通解应取为

y ?(x,y)??Ansinh(n?1?n?yn?x)sin()aa

b o U0 由条件③,有

a 题4.1图

U0??Ansinh(?

ax n?1n?bn?x)sin()aa

sin(两边同乘以

n?x)a,并从0到a对x积分,得到

a2U0n?xAn?sin()dx?asinh(n?ba)?a0

4U0?,n?1,3,5,?n?sinh(n?ba)2U0?(1?cosn?)??n?2,4,6,n?sinh(n?ba)?0,

?(x,y)?故得到槽内的电位分布

4U0?n?1,3,5,?1n?yn?xsinh()sin()nsinh(n?ba)aa

4.2 两平行无限大导体平面,距离为b,其间有一极薄的导体片由y?d到y?b(???x??)。

上板和薄片保持电位

U0,下板保持零电位,求板间电位的解。设在薄片平面上,从y?0到

y?d,电位线性变化,?(0,y)?U0yd。

y U0 解 应用叠加原理,设板间的电位为

?(x,y)??1(x,y)??2(x,y)

其中,

boxy dxy oxy 题 4.2图

?1(x,y)为不存在薄片的平行无限大导体平面间(电压为

?1(x,y)?U0yb;?2(x,y)是两个电位为零

x U0)的电位,即

的平行导体板间有导体薄片时的电位,其边界条件为: ①

?2(x,0)??2(x,b)?0

?2(x,y)?0(x??)

U0?U?y??0b?2(0,y)??(0,y)??1(0,y)???U0y?U0y?b?d③

(0?y?d)(d?y?b)

??xn?y?nb?2(x,y)??Ansin()e?(x,y)的通解为 bn?1根据条件①和②,可设2

U0?U?y0?n?y??bAnsin()???bn?1?U0y?U0y?b?d由条件③有

sin(两边同乘以

d(0?y?d)(d?y?b)

n?y)b,并从0到b对y积分,得到

b2U2Uyn?y11n?yAn?0?(1?)sin()dy?0?(?)ysin()dy?2U02bsin(n?d)b0bbbddbb(n?)db

U02bU0y?2bd??(x,y)?故得到

?x1n?dn?y?nbsin()sin()e?2nbbn?1 ?

4.3 求在上题的解中,除开定出边缘电容。

U0ybCf?一项外,其他所有项对电场总储能的贡献。并按

2WeU02解 在导体板(y?0)上,相应于

?2(x,y)的电荷面密度

???2???02?y?y?0?x2?0U0?1n?d?nb???sin(b)e?dn?1n

则导体板上(沿z方向单位长)相应的总电荷

??x2?0U0n?d?nb4?Ub1n?d00q2???2dx?2??2dx??2??sin()edx??sin()?22n?db?dnbn?1??0n?10???

2?0bU021We?q2U0??22?d相应的电场储能为 1n?dsin()?2b n?1n?其边缘电容为

2We4?0b?1n?dCf?2?2?2sin()U0?dn?1nbU0

4.4 如题4.4图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。

解 根据题意,电位?(x,y)满足的边界条件为 ① ?(0,y)??(a,y)?0

y ② ?(x,y)?0(y??) ③

?(x,0)?U0

根据条件①和②,电位?(x,y)的通解应取为

o

a题4.4图

U0

a x

?(x,y)??Ane?n?yasin(n?1?n?x)a

n?x)a

由条件③,有

U0??Ansin(n?1?