内容发布更新时间 : 2024/11/8 0:46:37星期一 下面是文章的全部内容请认真阅读。
C、有突触延搁现象; D、易受内环境变化的影响;
E、有总和现象:时间总和、空间总和。 8、大脑皮质体表感觉代表区的投射特点。
投射特点:(1)交叉投射,但头面部躯体感觉的投射是双侧性的;
(2)倒置安排,但头面部代表区内部的安排是正立的; (3)面积差异,代表区大小与感觉精细程度有关。
9、大脑皮层运动区的特征
(1)、一侧大脑皮层运动区主要控制对侧的肢体运动; (2)、具有精细的技能定位;
(3)、运动愈精细复杂的躯体的代表区也愈大;
(4)、电刺激使个别肌肉收缩,不发生肌群的协同性收缩运动。 10、简述特异性和非特异性投射系统。
特异性投射系统:各种特殊感觉传导通道,通过丘脑感觉接替核换神经元后,投射到大脑皮层的特定感觉区,具有点对点的投射关系,引起特定的该觉。
非特异性投射系统:特异性投射系统的第二级神经元的部分纤维或侧支进入脑干网状结构,然后进一步弥散性投射到大脑皮层的广泛区域没有专一感觉传导功能,因而不能引起特殊的感觉,与觉醒状态的维持有关。 11、简述胆碱能神经纤维的分布。
(1)交感神经的节前纤维。 (2)副交感神经的节前纤维。 (3)全部副交感神经的节后纤维。 (4)所有的运动神经。
(5)极少数交感纤维的节后纤维。 12、脊休克是如何产生的?有哪些主要表现?
(1)脊髓突然横断失去与高位中枢的联系,断面以下脊髓暂时丧失反射活动能力进入无反应状态,这种现象称为脊休克。
(2)表现为:脊休克时断面下所有反射均暂时消失,发汗、排尿、排便无法完成,同时骨髓肌由于失去支配神经的紧张性作用而表现紧张性降低,血管的紧张性也降低,血压下降。
13、脊休克的发生和恢复说明了什么?
脊休克的产生和恢复,说明脊髓能完成某些简单的反射活动,但平时它们是在高位中枢的控制下不易表现出来。高位中枢对脊髓反射的控制既有易化作用,也有抑制作用。
14、何谓锥体系和锥体外系?各有何生理功能?
(1)锥体系是指由皮层发出并经延髓锥体抵达对侧脊髓前角的皮层脊髓束和抵达脑神经运动核的皮层脑干束。对躯体运动的调节作用是发动随意运动,调节精细动作,保持运动的协调性。
(2)锥体外系:锥体系以外与躯体运动有关的传导通路统称为锥体外系(1分),主要功能是调节肌张力和协调肌的活动等,在保持肌的协调和适宜的肌张力的情况下,锥体系得以进行精细的随意运动。 15、简述突触后抑制。
突触后抑制:神经元兴奋导致抑制性中间神经元释放抑制性递质,作用于突触后膜上特异性受体,产生抑制性突触后电位,从而使突触后神经元出现抑制。包括传入侧枝性抑制和回返性抑制。
16、简述兴奋性突触传递机制。
突触前神经元兴奋是钙离子内流导致释放兴奋性递质,递质和突触后膜上特异性受体结合后,导致突触后面上化学门控通道开放,发生Na+离子内流,突触后膜上发生去极化,产生了兴奋性突触后电位。
17、简述躯干和四肢浅感觉传导通路。
(1)三级神经元的位置:脊神经节、脊髓后角固有核、背侧丘脑腹后外侧核 (2)脊髓交叉;
(3)经内囊投射到大脑皮层中央后回体表感觉区; 18、简述抑制性突触传递的机制。
突触前神经元兴奋是钙离子内流导致释放抑制性递质,递质和突触后膜上特异性受体结合后导致突触后面上化学门控通道开放,发生Cl-离子内流,K+外流,突触后膜上发生超极化,产生了抑制性突触后电位。 19、简述锥体系的传导通路?
锥体系由皮层脊髓束和皮层脑干束构成。皮层脊髓束是指由皮层发出,经内囊、脑干下行到达脊髓前角运动神经元的传导束;而皮层脑干束是指由皮层发出,经内囊到达脑干内各脑神经运动神经元的传导束。锥体系由2级神经元构成,上运动神经元位于皮层运动中枢,下运动神经元位于脑干运动核或脊髓灰质前角。锥体系的主要功能发动随意运动。 20、自主神经的功能特征。
(1)多数器官接受交感神经和副交感神经的双重支配,二者作用拮抗; (2)具有紧张性;
(3)外周有兴奋和抑制两种作用; (4)具有相对自主性;
(5)维持内环境的稳定发挥重要作用。
五、问答题
1、试述中枢化学突触的结构和传递原理。 同下一题
2、试述化学性突触的结构、传递过程及其特点。
(1)突触结构:突出前成分(突触囊泡)、突触间隙、突触后成分(受体、通道)。 (2)传递过程:前膜动作电位,使钙离子内流;
在钙离子的作用下,囊泡中神经递质释放; 递质与后膜特性性受体结合,后膜离子通道开放; 后膜发生去极化(EPSP),或超极化(IPSP)。
(3)传递特点:A、单向传递;B、易疲劳;C、有突触延搁现象;D、易受内环境变化的影响;E、有总和现象:时间总和、空间总和。
3、试比较化学性突触传递与神经纤维动作电位传导。
(1)冲动在神经纤维上的传导是以电信号进行的,是已兴奋的膜部分通过局部电流刺激了未兴奋的膜部分使之出现动作电位;而神经-肌肉接头处的传递实际上是“电—化学—电”的过程。
(2)冲动在神经纤维上传导是双向的;而神经-肌肉接头处的传递只能是单向传递,这是由它们的结构特点决定的。
(3)冲动在神经纤维上的传导是相对不疲劳的,且传导过程是相当“安全”、不易发生“阻滞”;而神经-肌肉接头处的传递由于化学物质Ach的消耗等原因易疲劳,且易受环境因素和药物的影响。
(4)冲动在神经纤维上的传导速度快;而神经-肌肉接头处的传递有时间延搁现象。 (5)冲动在神经纤维上的传导是“全或无”的;而神经-肌肉接头处的终板电位属于局部电位,有总和现象。
4、试述突触后抑制的类型、机制及其生理意义。
突触后抑制可分为:传入侧支性抑制和回返性抑制。
(1)传入侧枝性抑制的机制:传入神经纤维在兴奋某一中枢神经元的同时,通过其侧支兴奋另一抑制神经元,使其抑制另一个中枢神经元,亦称交互抑制。其生理意义在于使不同中枢之间的活动协调起来。
(2)回返性抑制的机制:某一中枢神经元兴奋时,通过其轴突侧支兴奋另一抑制性中间神经元,该抑制神经元兴奋后经其轴突返回到原先发动兴奋的中枢神经元,或同一中枢的其它神经元,发挥抑制作用。其生理意义在于使神经元活动及时终止或使同一中枢神经元活动同
步化。
5、试述兴奋性与抑制性突触后电位的作用与产生原理。
兴奋性突触后电位(EPSP)的作用是使突触后的神经元兴奋性提高。抑制性突触后电位(IPSP)的作用是使突触后的神经元兴奋性下降。其产生原理是:
(1)、EPSP是突触前膜释放兴奋性递质,作用突触后膜上的受体,引起细胞膜对Na+、K+等离子的通透性增加(主要是Na+),导致Na+内流,出现局部去极化电位,兴奋性提高。
(2)、IPSP是突触前膜释放抑制性递质(抑制性中间神经元释放的递质),导致突触后膜主要对CL-通透性增加,CL-内流产生局部超极化电位,兴奋性下降。
6、以屈肌反射为例说明突触后抑制。
在反射活动中,由于突触后神经元出现抑制性突触后电位而产生的中枢抑制,称为突触后抑制。抑制性中间神经元兴奋时,其末梢释放抑制性递质,使所有与其联系的其他神经元的突触后膜产生抑制性突触后电位,从而使突触后神经元的活动发生抑制。
例如屈肌反射进行时,冲动沿传入纤维进入脊髓后,一方面直接兴奋屈肌中枢的神经元,另一方面经其侧枝兴奋一个抑制性中间神经元,转而引起伸肌中枢的抑制。这种抑制是经传入神经的侧枝而引起的,所以又称为传入侧枝性抑制。通过这种抑制可使不同中枢(尤其是功能上拮抗的中枢)之间的活动协调起来;即当一个中枢兴奋时,与之拮抗的中枢即发生抑制,两者互相配合,使反射活动更为协调
7、何谓屈反射和对侧伸反射?试述其反射过程及生理意义。
(1)屈肌反射:脊动物的皮肤受伤害,受刺激一侧的肢体出现屈曲反射,关节的屈肌收缩而伸肌弛缓。其具有保护性意义。
(2)对侧伸肌反射:刺激强度增大,则在同侧肢体发生屈肌反射的基础上出现对侧肢体伸直的反射活动。其具有维持姿势的生理意义,动物一侧肢体屈曲,另一侧肢体伸直以支持体重。
8、试述交感和副交感系统的结构及功能特点。
结构特点:在植物神经节中交换神经元主要为效应器为心肌、平滑肌和腺体。为无髓纤维交感神经元位于胸腰段脊髓侧角,副交感神经元位于脑干副交感神经核和骶段脊髓。交感神经节前纤维短节后纤维长,副交感神经节前纤维长节后纤维短。
功能特点:多数器官接受交感神经和副交感神经的双重支配,二者作用拮抗,紧张性支配,外周有兴奋和抑制两种作用,具有相对自主性维持内环境的稳定。 9、比较自主神经与躯体运动神经结构和功能差异。
躯体运动神经 植物神经
效应器为骨骼肌 效应器为平滑肌、心肌和腺 直达骨骼肌 在植物神经节中交换神经元 只有一种传出纤维
有交感神经和副交感神经两种传出纤维
有髓神经纤维 受意识控制
无髓神经纤维
不受意识控制
10、试述自主神经系统的结构功能特点。
自主神经系统结构特点如下:参考上一题。
自主神经系统的功能特征如下:
(1)紧张性支配。自主神经对效应器的支配,一般具有紧张性作用。
(2)同一效应器的双重支配、相互拮抗。大多数内脏器官接受交感和副交感神经的双重支配。在具有双重支配的器官中,交感和副交感神经的作用往往是相互拮抗的。
(3)自主神经的外周性作用与效应器本身的功能状态有关。例如,交感神经对无孕子宫起抑制作用,而对有孕子宫却可加强其运动。
(4)有不同的活动范围和生理意义。①交感神经系统活动具广泛性,在紧急情况下占优势。生理意义在于动员机体潜能以适应环境的急变。②副交感神经系统活动较局限,安静时占优势。生理意义在于保护机体、休整恢复、积蓄能量以及加强排泄和生殖功能,使机体保持安静时的生命活动。
第六章 感觉器官
一、名词解释
1、视野:单眼固定不动,所能看到的空间范围的大小。 2、视力:视力是指分辨物体微细结构的能力。
3、暗适应与暗视觉:指从亮处进入暗处,最初看不清物体,以后视觉逐渐恢复的过程称为暗适应。由视杆细胞和与它们相联系的双极细胞及神经节细胞等组成的系统,对光的敏感度高,可在黑夜或弱光环境中发挥作用,但只能分辨物体的轮廓,不能分辨细节,没有彩色感,这种视觉称为暗视觉。。
4、明适应与明视觉:从暗处进入亮处,视紫红质大量分解,改由视锥细胞细胞视物,视觉逐渐恢复的过程称为明适应。由视锥细胞和与它们相联系的双极细胞及神经节细胞等组成的系统,它们对光的敏感性较差,只有在强光条件下才能被激活,但视物时可以辨别颜色,且对物体细节有高分辨能力,这种视觉称为明视觉。
5、近点:晶状体做最大调节后,能看清物体的最近距离称为近点。
6、近视:在无调节状态下,平行光线进入眼内,经屈光间质屈折后,在视网膜前形成焦点者称近视。
7、黄斑:在视神经乳头的外侧约3.5mm处,稍偏下方,有一黄色的小区域,叫黄斑,此处感光最灵敏。
9、行波学说:基底膜的振动以行波方式从蜗底向蜗顶传播,同时振幅也逐渐加大,在基底膜某一部位振幅达到最大,以后则很快衰减。不同频率的声波,?其行波传播的远近和最大振幅出现的部位不同:高频声波传播近,最大振幅位于蜗底部;低频声波传播远,最大振幅位于蜗顶部。 二、选择题
1、眼的折光系统中折光率最大的是 A