第十二届华杯赛决赛试题及解答 下载本文

内容发布更新时间 : 2024/12/26 14:16:50星期一 下面是文章的全部内容请认真阅读。

第十二届华杯赛决赛试题及解答

一、填空

1. “华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是________.

2. 计算:=________.

3. 如图所示,两个正方形ABCD和DEFG的边长都是整数厘米,点E在线段CD上,且CE<DE,线段CF=5厘米,则五边形ABCFG的面积等于________平方厘米.

4. 将、、、、从小到大排列,第三个数是________.

5. 下图a是一个密封水瓶的切面图,上半部为圆锥状,下半部为圆柱状,底面直径都是10厘米,水瓶高度是26厘米,瓶中液面的高度为12厘米,将水瓶倒置后,如下图b,瓶中液面的高度是16厘米,则水瓶的容积等于________立方厘米(.π=3.14,水瓶壁厚不计)

6. 一列数是按以下条件确定的:第一个是3,第二个是6,第三个是18,以后每一个数是前面所有数的和的2倍,则第六个数等于________,从这列数的第________个数开始,每个都大于2007.

7. 一个自然数,它的最大的约数和次大的约数的和是111,这个自然数是________. 8. 用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如下图a,从正面看这个立体,如下图b,则这个立体的表面积最多是________.

二、简答下列各题(要求写出简要过程)

9. 如图,在三角形ABC中,点D在BC上,且∠ABC=∠ACB、∠ADC=∠DAC,∠DAB=21°,求∠ABC的度数;并回答:图中哪些三角形是锐角三角形.

10. 李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始计时,直到最后一节车厢驶过窗口时,所记的时间是18秒。已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度是多少? 11. 下图是一个9×9的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些小方格填有1至9的数字。小青在第4列的空格中各填入了一个1至9中的自然数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小青将第4列的数字从上向下写成一个9位数,请写出这个9位数,并且简单说明理由.

12. 某班一次数学考试,所有成绩得优的同学的平均分是95分,没有得优的同学的平均分是80分,已知全班同学的平均成绩不少于90分,问得优的同学占全班同学的比例至少是多少?

三、详答下列各题(写出详细过程)

13. 如图,连接一个正六边形的各顶点,问图中共有多少个等腰三角形(包括等边三角形)?

14. 圆周上放置有7个空盒子,按顺时针方向依次编号为1,2,3,4,5,6,7。小明首先将第1枚白色棋子放入1号盒子,然后将第2枚白色棋子放入3号盒子,再将第3枚白色棋子放入6号盒子,……放置了第k-1枚白色棋子后,小明依顺时针方向数了k-1个盒子,并将第k枚白色棋子放在下一个盒子中,小明按照这个规则共放置了200枚白色棋子,随后,小青从1号盒子开始,按照逆时针方向和同样的规则在这些盒子中放入了300枚红色棋子,请回答:每个盒子各有多少枚白色棋子?每个盒子各有多少枚棋子?

参考答案 一、填空

1.解:偶数位自左至右依次为4、0、1、9、0、8,它们关于9的补码自左至右依次为5、9、8、0、9、1,所以“华杯赛”新的编码是:254948903981

2.解:原式=[20.75+1.24×]÷41.75=[20.75+0.125]÷41.75=20.875÷41.75=0.5

3.解:CF=5,又CD和DF都是整数,根据勾股定理可知CE=3,DF=4,CD=7,

所以五边形ABCFG的面积为:=16+49+6=71(平方厘米)

4.解:是

=0.524,=0.525,所以:,第三小的数

5.解:如果将瓶中的液体取出一部分,使正立时高度为11厘米,则倒立时高度为15厘米,

这时瓶中的液体刚好为瓶的容积的一半,所以瓶的容积相当于一个高22厘米(底面积不变)的圆柱的体积,即瓶的容积是:

3.14××22=1727(立方厘米)

6. 解:这列数的第一个是3,第二个是6,第三个是18,第四个是(3+6+18)×2=54,

第五个是(3+6+18+54)×2=162,第六个是(3+6+18+54+162)×2=486 设这列数的第一个为a,则第二个为2a,第三个为6a=2×3×a,第四个为18a=2×五个为54a=第六个为162a=2×

×a,第n个为2×

×a,第

×a,因为a=3,所以第n个数也可