内容发布更新时间 : 2024/11/18 11:30:52星期一 下面是文章的全部内容请认真阅读。
14. 15. 16. 17.
18. 19. 20. 21.
Singh, J.Semiconductor Devices: An Introduction.New York: McGraw-Hill, 1994 Sze, S.M.High-Speed Semiconductor Devices.New York: Wiley, 1990.
Sze, S.M.Physics of Semiconductor Devices.2nd ed.New York: Wiley, 1981. Tiwari, S., S.L.Wright, and A.W.Kleinsasser.“Transport and Related Properties of (Ga, Al)As/GaAs Double Heterojunction Bipolar Junction Transistors.” IEEE Transactions on Electron Devices, ED-34(February 1987), pp.185-87. Taur, Y., and T.H.Ning.Fundamentals of Modern VLSI Devices.New York: Cambridge University Press, 1998. Wang, S.Fundamentals of Semiconductor Theory and Device Physics.Englewood Cliffs, NJ: Prentice Hall, 1989. Warner, R.M., Jr., and B.L.Grung.Transistors: Fundamentals for the Integrated-Circuit Engineer.New York: Wiley, 1983.
Yang, E.S.Microelectronic Devices.New York: McGraw-Hill, 1988.
第四章习题
4-1.一硅肖特基势垒二极管有0.01 cm的接触面积,半导体中施主浓度为10
162cm
?3设?0?0.7V,VR?10.3V。计算
(1)耗尽层厚度;
(2)势垒电容;
(3)在表面处的电场
4-2.(1)从示于图4-3的GaAs肖特基二极管电容-电压曲线求出它的施主浓度、自建电
势势垒高度。
(2) 从图4-7计算势垒高度并与(1)的结果作比较。 4-3.画出金属在P型半导体上的肖特基势垒的能带结构图,忽略表面态。指出(1)?m??s 和(2)?m??s两种情形是整流节还是非整流结,并确定自建电势和势垒高度。
12?2?14-4.自由硅表面的施主浓度为10cm,均匀分布的表面态密度为Dss?10cmeV,
15?3电中性级为EV?0.3eV,计算该表面的表面势(提示:首先求出费米能级与电中性能
级之间的能量差,存在于这些表面态中的电荷必定与表面势所承受的耗尽层电荷相等)。 4-5.已知肖特基二极管的下列参数:?m?5.0V,?s?4.05eV,Nc?1019cm?3,
Nd?1015cm?3,以及k=11.8。假设界面态密度是可以忽略的,在300K计算:
(1)零偏压时势垒高度,自建电势,以及耗尽层宽度;
(2)在0.3v的正偏压时的热离子发射电流密度。
4-6.在一金属-硅的接触中,势垒高度为q?b?0.8eV,有效理查逊常数为
R*?102A/cm2?K2,Eg?1.1eV,Nd?1016cm?3,以及
Nc?Nv?1019cm?3。
(1)计算在300K,零偏压时半导体的体电势Vn和自建电势;
(2)假设Dp?15cm/s和Lp?10um,计算多数载流子电流对少数载流子电流的注入比。
4-7. 计算室温时金N-GaAs肖特基势垒的多数载流子电流对少数载流子电流的比例。
已知施主浓度为10
152cm?3,Lp?1um,?p?10?6s,以及R*?0.068R。
44-8. 在一金属-半导体势垒中,外电场?=10V/cm,介电常数为(1)k?4,(2)k?12,计算??和xm。
4-9.(1)推导出在肖特基二极管中dV载流子可以忽略。
(2)倘若在300K时,一般地V=0.25V以及?b?0.7V,估计温度系数。 4-10.肖特基检波器具有10 pF的电容,10?的串联电阻以及100?的二极管电阻,计
算它的截止频率。 参考文献 1. A..G.Milnes and D.L.Feucht, “Heterojunction and Metal-Semiconductor Junctions,”
Academic, New York, 1972.
2. C.A.Mead, Metal-Semiconductor Surface Barriers, Solid-State Electron.,
9:1023(1996). 3. E.H.Rhoderick, Comments on the Conduction Mechanism Schottky Diodes, J.Phys.D:
Appl.Phys., 5:1920-1929(1972).
4. A.Y.C.Yu, The Metal-Semiconductor Contact: An Old Device with a New Future,
dT作为电流密度的函数表达式。假设少数
IEEE Spectrum, 7:83-90(March 1970). 5. Crowley, A.M., and S.M.Sze.“Surface States and Barrier Height of
Metal-Semiconductor Systms.” Journal of Applied Physics 36 (1965), P.3212.
6. Pierret,R.F.Semiconductor Device Fundamentals.Reading,MA: Addison-Wesley,
1996.
7. Rideout, V.L.“A Review of the Theory, Technology and Applications of
Metal-Semiconductor Rectifiers.” Thin Solid Films 48, no.3(February 1, 1978), pp.261-291.
8. Singh, J.Semiconductor Devices: Basic Principles.New York: John Wiley and Sons,
2001.
9. Streetman, B.G.,and S.Banerjee.Solid State Electronic Devices.5th ed.Upper Saddle
River, NJ: Prentice-Hall, 2000.
10. Sze, S.M.Physics of Semiconductor Devices.2nd ed.New York: Wiley, 1981. 11. Wang, S.Fundamentals of Semiconductor Theory and Device Physics.Englewood Cliffs,
NJ: Prentice Hall, 1989.
12. Wolfe, C.M., N.Holonyak, Jr., and G.E.Stillman.Physical Properties of
Semiconductors.Englewood Cliffs, NJ: Prentice Hall, 1989.
13. Yang, E.S.Microelectronic Devices.New York: McGraw-Hill, 1988. 14.王家华等,半导体器件物理
第五章习题
5-1 硅N沟道JFET具有图5-1a的结构以及以下参数:Na?1018cm?3,
Nd?1015cm
?3,a=2?m,L?20?m和Z?0.2cm.计算:
(1)自建电势?0; (2)夹断电压 Vp0和Vp; (3)电 导G0;
(4)在栅极和漏极为零偏压时实际的沟道电导。
5-2. 试推导N沟道JEFT的电流与电压关系。它的截止面为2a×2a,为P区所包围,器件长度为L。
5-3. 推导结型场效应四级管的电流-电压关系,在该四级管中,两个栅极是分开的。
两个栅上的外加电压为VG1和VG2。假设为单边突变结。
5-4. 计算并画出在25、150和-50℃时习题5-1中JFET的转移特性。采用第一章给出
?的电子迁移率数据。栅电压的增量采用0.5V (计算机计算题)。 5-5.(1)计算并绘出在25℃时习题5-1中JFET的小信号饱和跨导;
(2)若rs=50?时,重复(1)(计算机计算题)。
5.6下图为结型场效应晶体管的低频小信号等效电路图,其中RS为源极电阻。证明:由
于RS的存在,晶体管的跨导变成
g'm?
IDSgm ?vgs1?gmRs,式中gm?IDS为忽略RS时的跨导。 vgsIDS _ Rs D
pv'' IDS gmgs?_
gmvg'sS
5-7. (1) 估算习题5-1中JFET的截止频率。
(2) 若L?2?m,重复(1); (3) 若采用N型GaAs,重复(1)。
5-8. 计算在VD?VP?5V和VG??1V时,习题5-1中JFET的漏极电阻rds。 5-9 一个N沟增强型GaAs MESFET在T=300K时,假设?b?0.89V。N沟道掺杂浓度
vg's
LNd?2?1015cm?3, VTH?0.25V。计算沟道厚度a。
5-10. 一N沟GaAs MESFET,其?b?0.9V,Nd?10cm,a?0.2?m,L?1?m,
17?3Z?10?m,(1)这是增强型器件还是耗尽型器件?(2)计算阈值电压或夹断电
压。(3)求VG?0时的饱和电流。(4)计算截止频率。
参考文献
1. W.Shockley, A Unipolar Field-Effect Transistor, Proc.IRE, 40:1365(1952).
2. 赵毅强等译,半导体器件物理(美Donald,A.Neamen著)电子工业出版社,2005.2 3. C.A.Liechti, Recent Advances in High-Frequency Field-Effect Transistor,
4. 5. 6. 7.
8.
9.
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.
25.
Int.Electron.Device Meet.Washington, 1975.Tech.Dig., P.5.
E.S.Yang, Current Saturation Mechanisms in Junction Field-Effect Transistors, Adv.Electron.Phys.31:247(1972). Cobbold, R.S.C.:“Theory and Application of the Field-Effect Transistors,” Wiley, New York, 1970.
Sevin, L.J.Jr.:“Field Effect Transistors,” McGraw-Hill, New York, 1965. Chang, C.S., and D.Y.S.Day.“Analytic Theory for Current-Voltage Characteristics and Field Distribution of GaAs MESFETs.” IEEE Transactions on Electron Devices 36, no.2(February 1989), pp.269-80. Daring, R.B.“Subthreshold Conduction in Uniformly Doped Epitaxial GaAs MESFETs.” IEEE Transactions on Electron Devices 36, no.7(July 1989), pp.1264-73.
Drummond, T.J., W.T.Masselink, and H.Morkoc.“Modulation-Doped GaAs/(Al,Ga)As Heterojunction Field-Effect Transistors: MODFETs.”Proceedings of the IEEE 74, no.6(June 1986), pp.773-812. Fritzsche, D.“Heterostructures in MODFETs.” Solid-State Electronics 30, no.11(November 1987), pp.1183-95.
Kano, K.Semiconductor Devices.Upper Saddle River, NJ: Prentice Hall, 1998. Liao, S.Y.Microwave Solid-State Devices.Englewood Cliffs, NJ: Prentice Hall, 1985. Ng, K.K.Complete Guide to Semiconductor Devices. New York: McGraw-Hill, 1995. Pierret,R.F.Field Effect Devices.Vol. 4 of the Modular Series on Solid State Devices.2nd ed.Reading, MA: Addison-Wesley, 1990.
Pierret,R.F.Semiconductor Device Fundamentals.Reading,MA: Addison-Wesley,1996.
Roulston, D.J.An Introduction to the Physics of Semiconductor Devices.New York: Oxford University Press, 1999.
Shur, M.GaAs Devices and Circuits.New York: Plenum Press, 1987.
Singh, J.Semiconductor Devices: An Introduction.New York: McGraw-Hill, 1994. Singh, J.Semiconductor Devices: Basic Principles.New York: John Wiley and Sons, 2001.
Streetman, B.G.,and S.Banerjee.Solid State Electronic Devices.5th ed.Upper Saddle River, NJ: Prentice-Hall, 2000.
Sze, S.M.High-Speed Semiconductor Devices.New York: Wiley, 1990.
Sze, S.M.Physics of Semiconductor Devices.2nd ed.New York: Wiley, 1981. Sze, S. Semiconductor Devices: Physics and Technology. New York: Wiley, 1985. Turner, J.A., R.S.Butlin, D.Parker, R.Bennet, A.Peake, and A.Hughes.“The Noise and Gain Performance of Submicron Gate Length GaAs FETs.” GaAs FET Principles and Technology.Edited by J.V.Di-Lorenzo and D.D.Khandelwal.Dedham, MA: Artech House, 1982.
Yang, E.S.Microelectronic Devices.New York: McGraw-Hill, 1988.