模电实验报告 下载本文

内容发布更新时间 : 2024/5/15 4:29:05星期一 下面是文章的全部内容请认真阅读。

国家电工电子实验教学中心 模拟电子技术实验

实验报告

(5)电阻负载改成大容性负载会出现什么失真?

(6)有哪些方法可以克服电阻负载改成大容性负载出现的失真?

2 实验目的与知识背景 2.1 实验目的

1)掌握失真放大电路的设计和解决电路的失真问题——提高系统地构思问题和解决问题的能力。

2)掌握消除放大电路各种失真技术——系统地归纳模拟电子技术中失真现象。 3)具备通过现象分析 2.2 知识点

1)非线性失真原理介绍

失真现象:一个理想的放大器,其输出信号应当如实的反映输入信号,即他们尽管在幅度上不同,时间上也可能有延迟,但波形应当是相同的.但是,在实际放大器中,由于种种原因,输入信号不可能与输入信号的波形完全相同,这种现象叫做失真.

非线性失真:放大器件的工作点进入了特性曲线的非线性区,使输入信号和输出信号不再保持线性关系,这样产生的失真称为非线性失真。

非线性失真产生的主要原因:(1)晶体管等特性的非线性;(2)静态工作等位置设置的不合适或输入信号过大。由于放大器件工作在非线性区而产生的非线性失真有5种:饱和失真、截止失真、双向失真、交越失真和不对称失真。非线性失真的特征是产生新的频率分量,即产生输入信号的单频分量为基波分量的高次谐波分量。 饱和失真与截止失真

当放大器的工作点选的太低,或太高时,放大器将不能对输入信号实施正常的放大。

国家电工电子实验教学中心 模拟电子技术实验

实验报告

如右图:三极管工作区域划分 如下图:输入、输出波形关系图例

2.1.1截止失真

图3-1-1所示为工作点太低的情况,由图可见,当工作点太低时,放大器能对输入的正半周信号实施正常的放大,而当输入信号为负半周时,因将小于三极管的开启电压,三极管将进入截止区,ib=0,ic=0,输出电压u0=uCE=Vcc将不随输入信号而变化,产生输出波形的失真。

这种失真是因工作点取的太低,输入负半周信号时,三极管进入截止区而产生的失真,所以称为截止失真。

2.1.2饱和失真

图3-1-2所示为工作点太高的情况,由图可见,当工作点太高时,放大器能对输

国家电工电子实验教学中心 模拟电子技术实验

实验报告

入的负半周信号实施正常的放大,而当输入信号为正半周时,因 太大了,使三极管进入饱和区,ic=βib的关系将不成立,输出电流将不随输入电流而变化,输出电压也不随输入信号而变化,产生输出波形的失真。

这种失真是因工作点取的太高,输入正半周信号时,三极管进入饱和区而产生的失真,所以称为饱和失真。

2.2 双向失真

工作点偏 高,输出波形易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大 时,管子将工作在非线性区,输出波形会产生双向失真。

此时静态工作点合适,但输入波形的幅度超过了直流的最大幅度,当输出信号过大时可能会出现饱和失真与截止失真一块儿出现的失真现象,称之为双向失真。即出现如图3-2所示的波形。

2.3交越失真

交越失真是乙类推挽放大器所特有的失真。在推挽放大器中,由两只晶体管分别在输入信号的正、负半周导通,对正、负半周信号进行放大。而乙类放大器的特点是不给晶体管建立静态偏置,使其导通的时间恰好为信号的半个周期。但是,由于晶体管的输入特性曲线在Ube较小时是弯曲的,晶体管基本上不导

国家电工电子实验教学中心 模拟电子技术实验

实验报告

通,即存在死区电压V r。当输入信号电压小于死区电压时, 两只晶体管基本上都不导通。这样,当输入信号为正弦波时,输出信号将不再是正弦波,即产生了失真. 这种失真是由于两只晶体管在交替工作时“交接”不好而产生的,称为交越失真. 如图3-3所示,此即为交越失真波形。

2.4 不对称失真

不对称失真也是推挽放大器所特有的失真。它是由于推挽管特性不对称,而使输入信号的正、负半周不对称。消除这种失真的办法是选用特性对称的推挽管. 尤其是在O TL 与OCL 电路中,互补管应选用同一种材料的, 就是说都选用锗管,或者都选用硅管,以保证其输入特性的对称。

如图3-4所示为一甲乙类推挽放大器,当开关K在右边时该放大器的推挽管推挽特性完全对称,此时输入与输出无失真。

当开关K在左边时,晶体管T1串联了一个电阻R0,相当于T1的基射极阻抗增加了R0,若将T1,R0整体看做一个晶体管,则此时T1,T2的推挽特性不再对称,输出图3-4-1正负半周幅度不同的失真信号,此即为不对称失真的波形。

图3-4-1非对称失真

2.5增益带宽积

增益带宽积是用来简单衡量放大器的性能的一个参数。就像它的名字一样,这个参数表示增益和带宽的乘积。在频率足够大的时候,增益带宽积是一个常数。

假设运算放大器的增益带宽积为1 MHz,它意味着当频率为1 Mhz时,器件的

国家电工电子实验教学中心 模拟电子技术实验

实验报告

增益下降到单位增益。即此时A=1。同时说明这个放大器最高可以以1 MHz的频率工作而不至于使输入信号失真。由于增益与频率的乘积是确定的,因此当同一器件需要得到10倍增益时,它最高只能够以100 kHz的频率工作。

2.6容性负载

一般把带电容参数的负载,即符合电压滞后电流特性的负载称为容性负载。充放电时,电压不能突变。其对应的功率因数为负值。对应的感性负载的功率因数为正值。

电路中类似电容的负载,可以使电流超前电压降低电路功率因数 在高频领域,是指负载虚部为负值的负载。

容性负载:和电源相比,负载电流超前负载电压一个相位差,此时负载为容性负载(如补偿电容负载)。

一般电源控制类产品,所给出的负载,如未加说明则是给出的是视在功率,即总容量功率;它既包括有功功率,也包括无功功率;

而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器,感应开关在控制它时,则要加上这8瓦;

具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。

混联电路中,若容抗比感抗大,电路呈容性,反之为感性。

通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功。

只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机,变压器等等,通常为感性负载。部分日光灯为容性负载。