2019全国中考数学试题分类汇编----反比例函数 下载本文

内容发布更新时间 : 2025/1/22 19:54:45星期一 下面是文章的全部内容请认真阅读。

数学试卷

(2019?孝感)如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分

别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为( )

2 4 6 8 A.B. C. D. 考点: 反比例函数与一次函数的交点问题. 分析: 首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOC=S△ODB=2,再根据反比例函数的对称性可知:OC=OD,AC=BD,即可求出四边形ACBD的面积. 解答: 解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D, ∴S△AOC=S△ODB=|k|=2, 又∵OC=OD,AC=BD, ∴S△AOC=S△ODA=S△ODB=S△OBC=2, ∴四边形ABCD的面积为:S△AOC+S△ODA+S△ODB+S△OBC=4×2=8. 故选D. 点评: 本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;同时考查了反比例函数图象的对称性. (2019?宜昌)如图,点B在反比例函数y?2x(x>0)的图象上,横坐标为1,过点B

分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为( ) A.1 B.2 C.3 D.4

21,y=-的图象分别交于A,B两点,若xx3点P是y轴上任意一点,则△PAB的面积是 . 2(2019?张家界)如图,直线x=2与反比例函数y=

数学试卷

(2019?晋江)若反比例函数y?2的图象上有两点P1(2,y1)和P2(3,y2),那么( B ). xA.y1?y2?0 B.y1?y2?0 C. y2?y1?0 D. y2?y1?0 (2019?龙岩)如图,将边长为4的等边三角形AOB放置于平面直角坐标系xoy中,F是

kAB边上的动点(不与端点A、B重合),过点F的反比例函数y=(k>0,x>0)与OA

x边交于点E,过点F作FC^x轴于点C,连结EF、OF. (1)若SDOCF=3,求反比例函数的解析式;

(2)在(1)的条件下,试判断以点E为圆心,EA长 为半径的圆与y轴的位置关系,并说明理由; (3)AB边上是否存在点F,使得EF^AE?

若存在,请求出BF:FA的值;若不存在,请说明理由. (1)设F(x,y),(x>0,y>0) .

则OC=x, CF=y ·················································································································· 1分

1∴S?OCF?xy?3. ··································································································· 2分

2∴xy=23.

∴k=23. ···················································································································· 3分 23∴反比例函数解析式为y=(x>0) . ··································································· 4分

x(2)该圆与y轴相离. ·································································································· 5分

理由:过点E作EH⊥x轴,垂足为H,过点E作EG⊥y轴,垂足为G. 在△AOB中,OA=AB=4,∠AOB=∠ABO=∠A=60?.

设OH=m,则tan?AOB?∴EH=3m,OE=2m. ∴E坐标为(m, ∵E在反比例y=∴3m=EH?3. OH3m). ··············· 6分 23图像上, x23. m数学试卷

∴m1=2, m2=-2(舍去).

∴OE=22,EA=4?22,EG=2 ······································································· 7分 ∵4?22<2,

∴EA<EG.

∴以E为圆心,EA垂为半径的圆与y轴相离. ················································ 8分

(3) 存在.···························································································································· 9分 方法一:假设存在点F,使AE⊥FE.过点F作FC⊥OB于点 C,过E点作EH⊥OB于点H.

设BF= x.

∵△AOB是等边三角形,

∴AB=OA=OB=4,∠AOB=∠ABO=∠A=60?.

1∴BC=FB·cos∠FBC=x

2FC=FB·sin∠FBC=3x 21∴AF=4-x,OC=OB -BC=4-x

2∵AE⊥FE

1∴AE=AF·cos∠A=2-x

21∴OE=O A-AE=x+2

21∴OH=OE·cos∠AOB=x?1,

4EH=OE·sin∠AOB=3x?3 43311∴E(x?1,····························································· 11分 x?3),F(4-x,x)

4242k∵E、F都在双曲线y=的图象上,

x3311∴(x?1)(x?3)=(4-x)x

42424解得 x1=4,x2=. ····························································································· 12分

5当BF=4时,AF=0,当BF=

BF不存在,舍去. AF416BF1时,AF=,··········································································· 13分 ?. ·55AF4方法二:假设存在点F,使AE⊥FE.过E点作EH⊥OB于 H.

∵△AOB是等边三角形,设E(m,

3m),则OE=2m, AE=4-2m.

∴AB=OA=AB=4,∠AOB=∠ABO=∠A=60?.

数学试卷

AE1?, AF2∴AF=2AE=8-4m,FB=4m-4. ∵Cos?A?∴FC=FB·sin∠FBC=23m-23, BC=FB·cos∠FBC=2m-2. ∴OC=6-2m

∴F(6-2m, 23m-23). ···················································································· 11分 ∵E、F都在双曲线y=

k上, x∴m·3m=(6-2m)(23m-23) 化简得:5m2-16m+12=0

6.···························································································· 12分 5当m=2时,AF=8-4m=0,BF=4,F与B重合,不合题意,舍去.

616164当m=时,AF=8-4m=BF=4-=.

55,55解得: m1=2,m2=

∴BF:FA?1:4.

13

OA?

(2019?莆田)如图,直线l:y=x+1与x轴、y轴分别交于A、B两点,点C与原点O关于直线l对称.反比例函数y=的图象经过点C,点P在反比例函数图象上且位于C点左侧,过点P作x轴、y轴的垂线分别交直线l于M、N两点. (1)求反比例函数的解析式; (2)求AN?BM的值.

11AC?40,OD?BD?3022

考点: 反比例函数与一次函数的交点问题. 专题: 计算题. 分析: (1)连接AC,BC,由题意得:四边形AOBC为正方形,对于一次函数解析式,分别令x与y为0求出对于y与x的值,确定出OA与OB的值,进而C的坐标,代入反比例解析式求出k的值,即可确定出反比例解析式; (2)过M作ME⊥y轴,作ND⊥x轴,根据P在反比例解析式上,设出P坐标得出数学试卷

ND的长,根据三角形AND为等腰直角三角形表示出AN与BM的长,即可求出所求式子的值. 解答: 解:(1)连接AC,BC,由题意得:四边形AOBC为正方形, 对于一次函数y=x+1,令x=0,求得:y=1;令y=0,求得:x=﹣1, ∴OA=OB=1, ∴C(﹣1,1), 将C(﹣1,1)代入y=得:1=则反比例函数解析式为y=﹣; (2)过M作ME⊥y轴,作ND⊥x轴, 设P(a,﹣),可得ND=﹣,ME=|a|=﹣a, ∵△AND和△BME为等腰直角三角形, ∴AN=×(﹣)=﹣?(﹣,BM=﹣a)=2. a, ,即k=﹣1, 则AN?BM=﹣ 点评: 此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,以及等腰直角三角形的性质,熟练掌握待定系数法是解本题的关键. (2019?三明)如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是( )

A.(﹣3,4) 考点: 反比例函数图象的对称性. B. (﹣4,﹣3) C. (﹣3,﹣4) D. (4,3)