内容发布更新时间 : 2025/1/23 3:15:05星期一 下面是文章的全部内容请认真阅读。
切削加工表面完整性研究现状
蚀和耐高温氧化等力学、物理和化学性能。下面将分别从表面形貌特征、表面机械性能中的残余应力与显微硬度、金相组织变化的白层等三个方面论述表面完整性的研究意义。
表面形貌特征主要包括表面缺陷、表面粗糙度等,通过降低表面粗糙度,能够增加零件之间接触面积,进而减少表面接触压强,降低零件表面磨损;但在实际加工过程中,表面粗糙度过小,接触面见润滑油不易存储,会导致接触面之间产生分子黏粘,增加磨损[6];通过表面完整性的研究能够改善工件的表面形貌特征,降低工件表面磨损,延长工件的使用寿命,提高工业生产的安全系数。工件的表面机械性能主要包括残余应力、显微硬度等指标,在切削加工过程中,加工表面冷作硬化后,工件表面层显微硬度增加,能够提高工件表面的耐磨性;而残余应力也会直接影响到工件的表面质量,表面层残余拉应力作用使得表面微裂纹不断扩大,会加速耐疲劳强度,降低工件的抗腐蚀性,但表面残余压应力则能够阻止疲劳裂纹的扩展,延缓疲劳破坏的产生,可提高耐疲劳强度。金相组织变化的白层是指伴随着硬态切削过程所形成的存在于已加工表面或亚表面下的、经金相试剂浸蚀后在光学显微镜下无特征形貌并呈白色或白亮色的硬层,白层能够抵抗一般的腐蚀,通常具有比原始材料更高的硬度,因此,通过研究表面完整性中的白层对于材料摩擦、磨损性能的提高有着重要意义。
3
切削加工表面完整性研究现状
2 表面粗糙度研究
表面粗糙度(Surface roughness)是在研究表面完整性时最常用的指标。表面粗糙度衡量的是工件表面的纹理和质地。表面粗糙度的大小是指实际表面和理想表面在垂直方向的偏差,若偏差大,则工件表面越粗糙,工件间的摩擦系数越大,会影响到工件的耐磨性、疲劳强度、抗腐蚀性;若偏差小,则工件表面越光滑,工件有优异的使用性能[7]。表面粗糙度作为工件表面完整性的重要评价指标之一,其形成原因可归纳为三个方面:一是刀刃和工件相对运动轨迹所形成的残留面积等几何因素;二是加工过程中在工件表面产生的塑性变形、积屑瘤、鳞刺和振动等物理因素;三是与加工工艺相关的工艺因素。
表面粗糙度对零件的装配、耐磨性、抗腐蚀性和疲劳寿命等有重要影响,具体而言主要包括以下几个方面:一是影响耐磨性,表面粗糙度高的工件间有效接触面积较小,压强增大,摩擦阻力也随之增大,从而加快工件磨损[8];二是影响疲劳强度,表面粗糙度较大的工件对应力集中更为敏感,工件表面的裂纹越多,抗疲劳强度就越低;三是影响耐腐蚀性,表面粗糙的工件更容易渗入腐蚀性气体或液体,耐腐蚀性较差;四是影响密封性,对于密封性要求较高的零部件需要有较低的表面粗糙度,以保证零件表面之间的严密贴合,避免气体或液体的渗漏;五是影响接触刚度,工件表面的波谷与缝隙越多,其接触面积就越小,在外力作用下,结合面解除变形的能力就越差,从而影响到机器的刚度;六是影响测量精度,零件表面及测量工具表面的粗糙度都会直接影响到测量精度;七是影响配合稳定性,对于需要间隙配合的工件,表面粗糙度越高,磨损状况就越差,从而使接触间歇不断增大,而对于过盈配合而言,表面粗糙度则会直接影响到工件间的连接强度。
目前对切削加工表面粗糙度的研究,主要有三种方法,一是理论建模法,二是设计实验法,三是人工智能法。
(1)表面粗糙度的理论建模法主要是对工件的加工方式以及加工过程中表面粗糙度的生成机理进行分析,并研究刀具形状、加工参数和振动等因素对表面粗糙度的影响,从而对表面粗糙度进行预测。早期表面粗糙度的理论模型主要以加工方式作为变量,而将刀具及工件视为刚性集合体,通过分析在不同加工方式下,刀具几何形状和进给量对表面残留面积的影响,来预测工件表面粗糙度。近年来
4
切削加工表面完整性研究现状
随着对切削加工表面粗糙度形成机理研究的进一步深入,道具跳动、进给方式、主轴回转偏心、轴向窜动、加工振动都被引入预测模型中,预测的结果也更加精确。
(2)粗糙度预测的第二种方法是设计实验法,即通过实验设计、实验数据处理与分析来对切削加工的表面粗糙度进行预测,Taguchi分析法以及回归分析法是应用最为方法的实验方法;其中,Taguchi分析法基于矩阵理论的一种实验设计和分析方法,利用正交表安排实验方案,并以误差因素模拟造成预测结果波动的各种干扰,通过对各种实验数据的统计分析,确定对表面质量影响的主要因素与次要因素[9];回归分析法是进行实验设计分析常用的一种数学方法,其主要思想是建立一个多项式模型,然后通过实验数据求解公式,获得预测模型的回归系数,建立表面粗糙度预测模型。
(3)人工智能法是近年来出现的表面粗糙度预测方法,主要借助人工神经网络、模糊算法、遗传算法、支持向量机等算法来实现表面粗糙度预测;其中,人工神经网络能够通过对样本的学习训练,不断改变网络的连接权值以及拓扑结构,使网络的输出不断接近期望的输出,以建立精确的表面粗糙度预测模型,实现对表面粗糙度的预测[10];模糊神经网络是通过模糊理论和人工神经网络理论的有机结合来实现的,具体的预测方式可以通过采集切向振动信号,并以主轴转速进给量和切向振动为影响因素,基于模糊网络对车削加工表面粗糙度进行预测。
5
切削加工表面完整性研究现状
3 残余应力研究
残余应力是指物体在没有外力施加或外力施加了卸载后,其内部存在的保持自相平衡的应力系统。金属切削加工过程伴随着材料内部的高温、高应变和高应变率,在已加工表面产生较大的残余应力;同时,经热处理后的被加工材料具有初始残余应力,加之铣削过程中的切削力、切削热和相变,加工表面与刀具间的摩擦和挤压都会引起零件内部残余应力的重新分布。
3.1 残余应力的生成机理研究
已加工表面和里层金属产生的最终残余应力是拉应力还是压应力以及大小是这几种机制竞争的结果,主导作用决定着最终的残余应力状态。残余应力的产生定性地分析有三种形成机理。
(1)机械应力引起的塑性变形:这也是这是工件在加工过程中最常出现的残余应力,多由于机械加工中的不均匀塑性变形而产生的。工件表面在施加外载时,若工件的一部分区域发生不均匀塑性变形,则在卸载后,该部分就会产生残余应力[11];同时,由于残余应力必须在整个工件内达到自相平衡,致使工件中不发生塑性变形的那些相关区域也产生了残余应力。
二、热应力引起的塑性变形:工件在热加工过程中常出现这种残余应力,这种残余应力是由于工件在热加工中的不均匀塑性变形而产生的。当工件在加热、冷却过程中由于高温下材料的屈服强度较低,在热的作用下,易于产生塑性变形、并且由于工件的几何形状复杂等等因素,在加热、冷却过程中工件各部分的热传导状态不同,工件的温度场不均匀,致使工件内各部分的弹性模量、热膨胀系数等等各不相同,从而工件内部所产生的塑性变形也是不均匀的。而这种塑性变形的不均匀性会破坏原有的内部力学结构,从而导致残余应力的出现。
三、相变引起的体积变化:工件在切削过程中经过热处理会出现因热应力引起的塑性变形,而在冷却时,工件各部分的瞬时冷却程度不均匀,冷却速度也不同,因而各部分的瞬时相变程度不均匀,即有的部位相变已经完全结束,而有的部位相变尚未开始,从而引起工件各部分的体积变化不均匀,导致残余应力的出现。另外,金属材料在进行材化学热处理、电镀、喷涂等等加工时,同样会因相变而引起体积变化[12];如钢材进行氮化时,在钢件表面由于形成氮化铁的相变而引起密度变化,从而在钢件表面形成明显的压缩残余应力。
6
切削加工表面完整性研究现状
3.2 残余应力影响因素的实验研究
残余应力对工件的静态力学性能、抗疲劳性能、抗应力腐蚀性能、尺寸稳定性以及使用寿命均有着显着的影响。残余应力分拉伸残余应力和压缩残余应力,其中压缩残余应力有助于提高加工表面的机械力学性能,如表面有微裂纹时,表层压缩残余应力能够促进裂纹的闭合,提高零件的耐疲劳性能,并且压缩残余压应力越大越有利;而表层拉伸残余应力则抑制裂纹的闭合,不利于零件的耐疲劳和耐腐蚀性能。因此通过控制切削条件以得到有利的残余应力分布就变得十分有意义。针对残余应力分布影响因素的研究主要有:
唐志涛[13]在2008年对航空铝合金残余应力进行了研究,分析了航空铝合金预拉伸板7050一T7451内部残余应力的产生机理,并基于裂纹柔度法测量铝合金厚板内部残余应力的分布规律;采用有限元法计算得到测试试样的裂纹柔度函数,在分析应力计算不确定度来源的基础上,研究裂纹柔度法中插值函数及其阶数的选择对应力计算结果不确定度的影响;计算得到45mm厚铝合金预拉伸板7050一7451内部残余应力分布规律;基于Doene一Hauk法测量铣削加工航空铝合金工件表面残余应力的状态,研究了铣削加工引入的残余应力引起的加工变形规律。
郭培燕[14]则对高速切削加工表面残余应力进行了研究,通过机械制造、热一弹塑性力学和有限元法等多学科的深入交叉,采用理论建模、软件分析和实验研究的方法,从金属切削原理入手,对高速切削加工表面的残余应力进行了深入的理论研究和数值模拟,并提出了残余应力的预测模型;通过有限元软件对切削过程的仿真模拟,研究了已加工表面残余应力的分布规律,以及切削用量、刀具参数对残余应力的影响规律;进行高速铣削实验和残余应力测试实验,研究残余应力的分布规律,并验证了有限元模型的可用性;运用正交回归分析方法,预测了残余应力与影响因素关系的数学模型。
覃孟扬[15]在2012年研究了基于预应力切削的加工表面残余应力控制研究,通过热力耦合理论分析、切削实验和有限元模拟与试验研究相结合的方法,对加工表面残余应力的分布以及控制残余应力的相关工艺进行了研究,在此基础上进一步提出和讨论了残余应力公差概念,作为技术参数来指导工件的加工和检测,并讨论了该概念的可行性。
7