2019-2020年七年级数学字母能表示什么教案(II)北师大版 下载本文

内容发布更新时间 : 2025/1/5 23:11:47星期一 下面是文章的全部内容请认真阅读。

2019-2020年七年级数学字母能表示什么教案(II)北师大版

●教学目标 (一)教学知识点

1.用代数式表示探索的规律.

2.能用字母表示以前学过的运算律和计算公式. (二)能力训练要求

1.经历探索规律并用代数式表示规律的过程.

2.能用字母和代数式表示以前学过的运算律和计算公式. 3.体会字母表示数的意义,形成初步的符号感. (三)情感与价值观要求

1.通过师生交往、互动、游戏,进一步加深师生情感,激发学生的求知欲. 2.在游戏活动中,使学生学会与人合作、与人交流. ●教学重点

使学生经历探索并用代数式表示规律的过程. ●教学难点

使学生经历探索并用代数式表示规律的过程. ●教学方法 引导探索法 ●教具准备 每人一盒火柴. 投影片三张.

第一张:引例(记作§3.1 A) 第二张:儿歌(记作§3.1 B) 第三张:火柴棒拼图(记作§3.1 C) ●教学过程

Ⅰ.巧设情景问题,引入课题

[师]同学们,我们来做一数学测试题.(出示投影片§3.1 A)

自己随便想一个自然数,将这个数乘5减7,再把结果乘2加14,那么最后结果的个位数是多少? (学生计算、讨论)

[生甲]我用自然数2,去乘5减7,得3,再用3乘2加14,得出结果为20,即: (2×5-7)×2+14=20. 所以最后结果的个位数是0.

[生乙]我用自然数8,去乘5减7,得33,再用33乘2加14,得80,即: (8×5-7)×2+14=80 所以最后结果的个位数是0.

[生丙]我用自然数17,去乘5减7,得78,再用78乘2加14,得170,即: (17×5-7)×2+14=170 所以,最后结果的个位数是0.

[生丁]老师,我看到:只要用一个自然数去乘5减7,再把结果乘2加14,那么最后计算的结果的个位数都是0.

[师]大家表现得很好,你们相信丁同学得到的结论吗?假如用自然数x,去乘5减7,再把结果乘2加14,这时算式应如何写,它的结果的个位数是0吗?

[生]用自然数x,去乘5减7,再把结果乘2加14,这时算式应写成: (5×x-7)×2+14

这个算式的最后结果的个位数我想应是0,所以我觉得丁同学的结论是对的.

[师]很好,有些同学现在还有些迷惑,那我们从今天开始就来学习第三章“字母表示数”,学完了这章的内容后,这个迷惑自己就可以解决.今天我们先来探讨第三章的第一节:“字母能表示什么”.

Ⅱ.讲授新课

[师]儿时大家都唱过儿歌,不知是否记得有这么一首永远也唱不完的儿歌. “一只青蛙1张嘴,2只眼睛4条腿,1声扑通跳下水; 二只青蛙2张嘴,4只眼睛8条腿,2声扑通跳下水; 三只青蛙3张嘴,6只眼睛12条腿,3声扑通跳下水; ……” 在这首儿歌中,假如有a只青蛙,那么请同学们思考一下,应该有多少张嘴、多少只眼睛多少条腿,以及多少声扑通跳下水呢? (教师叙述完后出示投影片§3.1 B)

[生]有a只青蛙,就有a张嘴,2a只眼睛,4×a条腿,a声扑通跳下水.

[师]对,这首儿歌反映了青蛙的只数和青蛙的嘴的数目,眼睛的数目,腿的数目及跳下水的次数之间的数量关系,即:

青蛙眼睛的数目等于青蛙数目的2倍,腿的数目等于青蛙数目的4倍,青蛙嘴的数目和跳下水的次数都等于青蛙的数目.

用字母a表示青蛙的数目后,上述关系就可简捷地表示为:“a只青蛙有a张嘴,2a只眼睛,4a条腿,a声扑通跳下水.”

好,下面请同学们拿出准备好的火柴,动手操作:(出示投影片§3.1 C) 如图所示,搭一个正方形需要4根火柴棒. (1)按上面的方式,搭2个正方形需要_____根火柴棒.搭3个正方形需要_____根火柴棒. (学生动手操作)

[生]搭2个正方形需要7根火柴棒,搭3个正方形需要10根火柴棒. [师]很好,照这样搭下去,搭10个这样的正方形需要多少根火柴棒? [生]我动手搭出了10个这样的正方形,共用了31根火柴棒. [师]其他同学呢?和这位同学用的火柴棒的根数一样吗? [生齐声]一样.

[师]很好,搭10个这样的正方形需要31根火柴棒,那搭100个这样的正方形需要多少根火柴棒呢?你是怎样得到的?

(学生们积极主动,有的用火柴棒拼摆,有的讨论、找规律)

[生1]搭成第1个正方形后,搭第2个正方形时只需要3根火柴棒,搭第3个正方形也只用3根火柴棒,以此类似,每增加3根火柴棒,相应就多一个正方形,所以搭100个这样的正方形,就需要301根火柴棒.即:

4+3×(100-1)=301

[生2]我是这样想的:每个正方形需要4根火柴棒,搭100个正方形需400根,但只有第一个正方形用4根,其余的都是用了3根,这时要搭100个如图所示的正方形,就多出了99根,所以应从400根火柴中减去多余的.即:

4×100-(100-1)=301

因此,搭100个这样的正方形需要301根火柴棒.

[生3]搭10个如图所示的正方形时,上面和下面分别用了10根火柴,即每个正方形的上面和下面各用1根火柴,竖的放置的火柴棒是11根,它比正方形多1,因此想到:搭100个这样的正方形,上面和下面总共用(2×100)根,竖直放置的火柴棒应是(100+1)根.所以,搭100个这样的正方形总共需要301根火柴.即:

2×100+(100+1)=301.

[师]如果用火柴棒搭100个这样的正方形时,太麻烦了,那么在这时就需要找规律,这三位同学从不同侧面进行了分析,分析得都挺好.还有没有其他的计算方法?

[生]把搭第一个正方形的方法看作是先搭1根再增加3根,那么搭100个这样的正方形就需要(1+3×100)根,即301根.

[师]很好,只要大家多动动脑,就可以把问题解决了.现在大家想一想:如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?同学们分组进行讨论,总结,然后交流.

[生甲]第1个正方形用4根火柴棒,每增加1个正方形增加3根,那么搭x个正方形就需要[4+3×(x-1)]根火柴棒.

[生乙]x个正方形的上面一排和下面一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.

[生丙]我们组的结果是:把搭第1个正方形的方法看作是先搭1根再增加3根,那么搭x个正方形就需要(1+3x)根.

[生丁]还可以这样说:把每个正方形都看成是用4根火柴棒搭成的,然后再减去多算的根数,这样就得到搭x个正方形所需要的火柴棒的根数了.即:4x-(x-1).

[师]同学们个个表现得真棒.大家分组讨论后,从不同侧面进行了分析,并且分析得都很有道理,也很正确.我们用字母x表示了这样的一种数量关系:正方形的个数与火柴棒之间的数量关系.

下面我们来做一做:

根据你的计算方法,搭200个这样的正方形需要多少根火柴棒? [生]根据计算知道:搭200个这样的正方形需要601根火柴棒. [师]你是如何计算的?

[生]我用200代替上面算式中的x,就可以得到搭200个这样的正方形所需要的火柴棒的根数.即:4×200-(200-1)=601.

[师]对,刚才我们研究出搭这样的正方形的个数与火柴棒之间的数量关系式共有四个,即: ①4+3×(x-1); ②x+x+(x+1); ③1+3x; ④4x-(x-1).

要求搭200个这样的正方形需要的火柴棒的根数时,只要任选上述四个关系式中的任一个,然后用200代替其中的x,即可得到.

大家计算的结果都是601吗? [生齐声]是.

[师]由此可知:用字母表示数有时可以给我们研究问题带来很大方便.用字母表示数是代数的一个重要特点,是数学发展史上的一大进步.

在第二章“有理数及其运算”中,我们曾用字母表示数的运算律,想一想:如何用字母表示数的运算律?

[生]如果用a、b、c分别表示有理数,那么,加法的交换律可以表示成:a+b=b+a; 加法结合律可以表示成:(a+b)+c=a+(b+c) 乘法交换律可以表示成:a·b=b·a

乘法结合律可以表示成:(a·b)·c=a·(b·c)