#基于PROTEUS仿真的频率计数器(顾加柱)改 下载本文

内容发布更新时间 : 2024/4/28 22:01:31星期一 下面是文章的全部内容请认真阅读。

南京大学金陵学院 毕业论文(设计)

图3.2AT89C51的引脚图

3.1.2 AT89C51的晶振接法

关于AT89C51的晶振接法如图3.3所示。

图3.3 AT89C51的晶振接法

晶振是一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定、精确的单频振荡。在通常情况下,晶振的精确度达到百万之五十。我们需

南京大学金陵学院 毕业论文(设计)

要晶振提供时钟周期然后使得单片机能够执行代码。晶振X1、电容C2/C4及片内和非门(作为反馈、放大元件)构成了电容三点式振荡器,振荡信号频率和晶振频率及电容C4、C2的容量有关,但主要由电路中晶振频率决定.。

我选用2.4MHz频率的晶体,电路允许输入的脉冲频率为10kHz。电容的大小范围为一般为20pF~40pF,本次设计我们居中选用33pF电容。电容的作用还在于能够容易起震并减少频率的温漂。 3.1.3单片机的复位

单片机的复位一般情况下都是靠外部电路链接来实现的,在时钟电路工作之后,仅仅需要在单片机的RST引脚上出现高于24个时钟振荡脉冲(相当于2个机器周期)以上的高电平,这样的单片机便能够实现初始化状态复位。为了能够保证使用系统能够可靠正常的复位,在设计复位电路的时候,通常使RST引脚保持10ms以上的高电平的水平。只要保持高电平的状态,那么单片机就能够实现循环复位;当RST从高电平顺利地转变为低电平以后,AT89C51单片机从0000H地址开始执行程序。需知在复位有效期间,EA引脚输出高电平。

它的工作原理在于当电源接通,上电瞬间,电源对C1进行充电,此时复位引脚9即RST高电平有效,随着时间推移,RST电平下降,此时转为单片机正常工作。一般情况下复位时间为3~5个的RC时间。

按键开关的使用是为了避免死机状态下能够正常复位。而设置并联电容C3(这里也可以选择串联一个远小于R1的电阻可以达到一样的效果)是为了限制按下瞬间电容C1的电流,避免产生火花,以达到保护按键开关的目的。RC复位电路的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。AT89C51上电复位电路图如图3.4所示:

南京大学金陵学院 毕业论文(设计)

图3.4复位电路 3.1.4显示电路

在一些单片机系统中,经常使用到的显示器有如下几种:液晶显示器,简称LCD;荧光管显示器而发光二极管。显示的部分又分为固定部分的显示和可以拼装的字段其他显示,此外还有共阳极和共阴极之分等。如图3.5所示。

图3.5显示所用LED显示器

本次实验采用7SEG-MPX8-CC-BLUE,里面有八个数码管的显示电路,这里只用到6个。每个数码管都是一个小型电路图,如图3.6显示。

南京大学金陵学院 毕业论文(设计)

图3.6 数码管显示电路

我们知道共阴和共阳结构的LED显示器各笔划的段名和安排的位置是相同的。当其中的二极管导通时,相应的笔划部分会发亮,由发亮的笔划段组合而显示的各种字符。其中的8个笔划段a、b、c、d、e、f、g、dP对应于一个字节(8位)的D0、D1、D2、D3、D4、D5、D6、D7。如下表1.1,用LED显示器显示十进制转换成十六进制数的字形代码

字形 0 1 2 3 4 5 6 7 8 共阳极代码 共阴极代码 字形 共阳极代码 共阴极代码 C0H F9H A4H BOH 99H 92H 82H F8H 80H 3FH 06H 5BH 4FH 66H 6DH 7DH 07H 7FH 9 A B C D E F 灭 90H 88H 83H C6H A1H 86H 8EH FFH 6FH 77H 7CH 39H 5EH 79H 71H 00H 3.1.5系统总体电路图

3.8系统总体电路图

南京大学金陵学院 毕业论文(设计)

3.2软件设计

3.2.1关于信号处理的介绍

在频率计数器开始工作,或者完成一次简单的频率测量,系统软件都进行测量初始化。测量初始化模块设置堆栈指针(SP)、工作寄存器、中断控制和定时/计数器的工作方式。

首先定时/计数器的工作首先被设置为计数器的计数寄存器清0后,置运行控制位TR为1,启动对待测信号的计数。计数闸门由软件延时程序实现,从计数闸门的最小值开始,也就是从测量频率的高量程开始。利用计数闸门结束时TR清0,停止计数。计数寄存器中的值通过16进制数道10进制数转换程序转换为10进制数。对10进制数的最高位进行判别,我们发现若其中的该位不为0,一旦满足测量数据有效位数的要求,测量值和量程信息一起送到显示模块;若该位为0,将计数闸门的宽度不断加大,直到10倍,我们需要重新对待测信号的技术,直到满足测量数据有效位数的要求,达到预期的期望。

等到被测信号经预处理电路分频后变成较宽的方波信号,并加至单片机的P3.4引脚,为单片机测信号频率提供有效的输入信号。单片机通过检测P3.4引脚来判断是否能够启动测周期程序。当该引脚为高电平时则等待,知道该引脚出现低电平时才开始测周期。首先我们要将零赋给TH0、TL0两个寄存器不断的输入,将定时器T0的运行控制位TR0置位,同时也将ET0置位以允许定时器T0终端,然后再判断P3.4引脚是否还为低电平,这个时候我们要当不是低电平时等待。

3.2.2关于终端控制

由于我们在程序设计中用到中断方式,所以我们在此对单片机中断系统中的中断控制作一下介绍。

其实中断是工业过程控制及智能化仪器用微型机或单片机使用最多的一种数据传送方式。单片机的这一种工作过程称为中断方式。在通常情况下,单片机执行主程序,只有当正常状态出现故障,或发出中断请求时,单片机才能够暂停执行主程序,转去执行或处理其他的中断服务程序,执行完中断服务程序的过程中,再返回到主程序继续运行。我们在基于资源共享原则上的中断技术,在计算机中得到了广泛的使用。中断技术能实现CPU和外部设备的并行工作,利用提高CPU的利用率的方式以及数据的输入/输出效率;我们的中断技术也能对计算机运行过程中突然发生的故障及时发现并进行自动处理如:硬件、运错误及程序等方面的故障;中断技术还能使我们通过键盘不断的发出请求命令,随时跟进对运行中的计算机进行干扰,而不用先停机处理,然后再重新开机等方式进行。