异步电动机矢量控制系统仿真模型设计本科本科毕业论文 下载本文

内容发布更新时间 : 2024/6/22 18:45:40星期一 下面是文章的全部内容请认真阅读。

异步电动机矢量控制系统的仿真模型设计

中文摘要:矢量控制是在电机统一理论、机电能量转换和坐标变换理论的基础上发展起来的,它的思想就是将异步电动机模拟成直流电动机来控制,通过坐标变换,将定子电流矢量分解为按转子磁场定向的两个直流分量并分别加以控制,从而实现磁通和转矩的解耦控制,达到直流电机的控制效果。本文针对异步电动机磁链闭环矢量控制进行研究和探索。通过空间矢量的坐标变换,对系统进行建模,其中包括直流电源、逆变器、电动机、转子磁链电流模型、ASR、ATR、AΨR等模块。并对控制系统进行了MATLAB/Simulink仿真分析。

关键词:异步电动机、矢量控制、MATLAB仿真

Abstract:Vector control(VC) is based on motor unification principle,energy conversion and vector coordinate transformation theory.By transforming coordinate, The stator current is decomposing two DC parts which orientated as the rotator magnetic field and controlled respectively.So magnetic flux and torque are decoupled. It controls the asynchronous motor as a synchronous way. This paper does some research works of the asynchronous motor flux vector control closed-loop research and exploration. Through the space vector coordinate transformation, and the modeling of system,including DC power supply, inverter, AC motor, rotor flux current model, the ASR, ATR,AΨR and modules. And the control system is MATLAB/Simulink analysis.

Key Words:Asynchronous Motor,Vector Control,MATLAB Simulation

一、 绪论

1、交直流调速系统的相关概念及比较

交流调速系统是以交流电动机作为控制对象的电力传动自动控制系统。直流调速系统是以直流电动机作为控制对象的电力传动自控系统。

直流调速系统可以在额定转速以下通过保持励磁电流改变电枢电压的方法实现恒转矩调速;在额定转速以上通过保持电枢电压改变励磁电流来实现恒功率调速。采用转速、电流双闭环直流调速系统可以获得优良的静、动态调速特性,因此直流调速在很长时间以来(20世纪80年代以前)一直占据主导地位。 但是,由于直流电动机本身结构上存在机械式换向器和电刷这一致命弱点,这就给直流调速系统的开发及应用带来了一系列的限制,具体表现在以下几个方面:

(1)机械式换向器表面线速度及换向电流、电压有一定的限值,这极大的限制了单台电动机的转速和运行功率。而且,大功率的电机制造技术难,成本高。对于高转速大功率的电动机应用场合,直流调速方法是行不通的。

(2)为使直流电动机的机械式换向器能够可靠的工作,往往要增大电枢和换向器的直径,导致电机转动惯量很大,对于要求快速响应的生产场合就不能够实现。 (3)机械式换向器带来的另外一个麻烦就是必须经常检修和维护,因为电刷要必须定期更换。这样导致直流调速系统的维护工作量大,运行成本高,同时由于定期的停机检修也造成了生产效率的下降。

(4)由于电刷的电火花,直流电机也不能应用于易燃易爆的生产场合,对于多粉尘和多腐蚀性气体的地方也不适用。

总之,由于直流电动机存在的这些问题,使得直流电动机的应用受到了极大的限制,也使得直流调速系统的发展和应用受到相应的限制。

相对于直流电动机而言,交流电动机(特别是鼠笼型异步电动机)具有许多优点:结构简单、制造容易、价格便宜、坚固耐用、转动惯量小、运行可靠、少维修、使用环境及结构发展不受限制等优点。

交流调速系统由于采用了无换向器的交流电动机作为调速传动设备,突破了直流电动机所带来的种种限制,可以满足生产生活的各种需求,具有很大的发展潜力。

2、交流调速系统的历史和现状

电能是现代社会最广泛使用的一种能量形式,具有生产和变换比较经济、传输和分配比较容易,使用和控制比较方便的特点,因此成为国民经济各部门动力的主要来源。而电能的生产、交换、传输、分配、使用和控制等,都必须利用电机来完成。所以电机传动在工业、农业、交通运输、国防军事设施以及日常生活中得到了广泛的应用。其中许多的机械对调速有要求,如城市无轨电车,铁路牵引机车,电梯、机床、造纸机械、纺织机械等等,为了满足运行、生产工艺的要求需要调速;另一类机械如风机、水泵等为了减少运行损耗、节约电能也需要调速。在20世纪70年代以前的很长一段时间内,直流调速占统治地位,交流调速系统的方案虽然己有多种发明并得到实际应用,但其性能始终无法与直流调速系统相匹敌。因为直流调速系统具有启制动性能良好,调速范围广,调速精度高,控制方案简单高效等突出的优点。同时直流调速系统与交流调速系统相比无论从理论土还是实践上都十分成熟。对于直流电机而言,只需要改变电机的输入电压或励磁电流,就可以在很广的范围内实现无级调速,而且在磁场恒定的条件下它的转矩和电枢电流成正比,转矩易于控制。因此直流电动机调速系统比较容易获得优良的动态性能。并且随着半导体变流器件的发展,直流调速系统也从旋转变流机组(G一一M系统),静止可控硅变流器调速系统(V一M系统)发展到目前为止还在很多领域(铁路用的直流牵引机车和城市无轨电车等)广泛应用的直流斩波器和脉冲宽度调制器直流调速系统。但是直流电动机本身具有机械接触式换向器,这使得直流电机调速系统的应用带来一些问题。

(1)首先电机的结构复杂,制造费时,价格昂贵。在使用时由于换向器的存在, 调速系统的维护费时费力。因为换向器的机械强度不高,电刷易磨损,需要经常维护检修。

(2)由于换向器的换向问题的存在,对调速系统容量和最高速度有限制。无法感应电机矢量控制系统的研究与仿真做成高速大容量的机组。 (3)无法应用在粉尘、腐蚀性气体和易燃易爆的场合。

所有这些使得直流拖动系统无法适应现代拖动系统向高速大容量方向发展的趋势。而交流电动机,特别是鼠笼型交流异步电动机,由于它结构简单,制造方便,价格低廉,体积小(与同容量的直流电机相比),并且坚固耐用,转动惯量小,运行可靠,维护简单,可用于恶劣场合等优点,在各种场合得到了广泛的应用。但是交流调速比较困难,与直流电机气隙磁场有励磁绕组产生,交流电机的气隙磁场则是有定子绕组和转子绕组共同产生,这就使得交流电机的电磁转矩不