内容发布更新时间 : 2024/12/27 3:25:59星期一 下面是文章的全部内容请认真阅读。
HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”
②以下证明对于任意的m,直线AR与直线AQ的交点S均在直线:x?4上.
12事实上,由
1122?x22??y?1?4?x?my?1?,得?my?1?122?4y2?4,即?m?4?y22?2my?3?0,
记R?x,y?,Q?x,y?,则y?y100?设AR与交于点S(4,y),由设AQ与交于点
2?2m?3,yy?12m2?4m2?4y0y16y1?,y0?.4?2x1?2x1?2.
得
S0?(4,y0?),由
y0?y2?,4?2x2?2得y??x2y?2.
202y0?y0??6y?my2?1??2y2?my1?3?4my1y2?6?y1?y2?6y12y2?1??x1?2x2?2?x1?2??x2?2??x1?2??x2?2??12m?12m?22?m?4m?4?0?x1?2??x2?2?, ∴y0?y0?,即S与S?重合,
00这说明,当m变化时,点S恒在定直线:x?4上.
a
19.解:(1)∵f ?(x)=2+≥0对x?[1,+∞)恒成立,
x
∴2x+a≥0∴2+a≥0∴a≥-2.
?x1+x2?f (x1)+f (x2)lnx1+lnx2
?≤(2)f ??a≥222??
x1+x2x1+x2aln?lnx1+lnx2≤2ln
22
x1+x2x1+x21
证法一:∵≥x1·x2∴ln≥lnx1·x2=
222lnx1+lnx2
ln(x1·x2)=,得证.
2
?x1+x2?f (x1)+f (x2)lnx1+lnx2
?≤证法二:f ??a≥222??
·16·
HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”
x1+x2x1+x2
aln?lnx1+lnx2≤2ln
22
x+x2
令F(x)=2ln-lnx-lnx2 ∵F(x2)=0【要证
2
F(x)的最小值为F(x2)】
x-x221∴F?(x)=-= ∴当x>x2时,F?(x)
x+x2xx(x-x2)
>0,当0<x<x2时,F?(x)<0. ∴F(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,∴F(x)min=F(x2)=0
x1+x2
∴F(x)≥0∴F(x1)≥0∴lnx1+lnx2≤2ln,得2
证.
x2x2
(3)∵f (x)≤(a+3)x-∴2x+alnx≤(a+3)x-
22
x2
∴a(x-lnx)≥-x在[1,e]上有解
2
1x-1
∵(x-lnx)?=1-=≥0∴x-lnx在[1,e]上递
xx
增,∴x-lnx≥1-ln1=1>0
x2x2-x-x22∴a≥,令g(x)=∴g?(x)=
x-lnxx-lnx
x21
(x-1)(x-lnx)-(2-x)(1-)
x
(x-lnx)2
=x
(x-1)(-lnx+1)
2
(x-lnx)2
·17·
HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”
xxe
∵x∈[1,e]∴x-1≥0,-lnx+1=+ln>0∴g?(x)
x22
≥0∴g(x)在[1,e]上递增
1
∴a≥g(x)min=g(1)=-.
2
20.解:当n?1时,(1??)a???a?3,?a?3
1当n?2时,由(1??)S???a?2且?4?,(1??)S33111nnnn?1???an?1?2n?11?4?33
1?an??an?1?4n2
nna当??4时,①4rs?an?11ana1n?1?(n?2)???n?1n24244即an?(2n?1)?4n?1
bn① 设存在a,a,a成等比数列,则
[(2r?1)?4]?[(2t?1)?4]?(2s?1)?4
(2r?1)(2t?1)?4?(2s?1)由奇偶性知r?t?2s?0 整理得:
?(2r?1)(2t?1)?(r?t?1)?(r?t)?0这与r?t矛盾,所以不存在这样的r,s,t. (2)当时,①??42?42??42?4?a???a???(a?)??b ??4??4??4tr?1t?122s?2r?t?2s222nn?1n?1nn?1n?1n?1??b?是以3??4为首项,?为公比当??4且??4时,数列3??4nnb的等比数列;当??4时,3?0n 不是等比数列.
3??4n?12????4n??4??43??4n?1??n??4a3??4?n2?cn?n??()???44n?(??4)4②由①知b?,从而a
?
cn当??4时,注意到n???时,c?4不成立;
1?
·18·
n???,当n充分大时,
HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”
2??4(3??4)2?0,??0??c?递增,而c当4???4时,?(??4)??43n1?4?cn?03
47只需??2?4????; ?4323?当??4时,c3n?34,符合条件;
4(3??4)2?0,??0??cn?4?当0???4时, 递减,c1?44?0?cn?,
3?(??4)cn?4成立;
综上所述,??(0,72] ??43319·
·