内容发布更新时间 : 2024/12/26 23:41:31星期一 下面是文章的全部内容请认真阅读。
6.3.1从实际问题到方程
一、本课重点,请你理一理 列方程解应用题的一般步骤是:
(1)“设”:用字母(例如x)表示问题的_未知量__; (2)“找”:看清题意,分析题中及其关系,找出用来列方程的_ 等量关系_____;
(3)“列”:用字母的代数式表示相关的量,根据 等量关系____列出方程; (4)“解”:解方程;
(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;
(6)“答”:答出题目中所问的问题。 二、基础题,请你做一做
1、已知小帅和大帅共有100元钱,设小帅有x元,则大帅有 (100—x) 元
2、一个数x的2倍减去7的差, 得36 ,列方程为 ___ 2x—7=36_______; 三、综合题,请你试一试 1.完成下面的解题过程:
小帅种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?
解:设x周后树苗长高到100厘米.根据题意,得
40+15x=100 . 解方程,得 x=4 . 答: 4 周后树苗长高到100厘米.
2 (年龄问题)在课外活动中,张老师发现同学们的年龄大多是13岁.就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
解:设x年后,学生的年龄是张老师年龄的三分之一,依题意,得
13?x?1(45?x)
3解得x=3
答:3年后,学生的年龄是张老师年龄的三分之一。 3甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支? 解:设有甲种铅笔x支,依题意,得
0.3x?0.6(20?x)?9
解得x=10
乙种铅笔有20-10=10支 答:甲、乙两种铅笔各有10支。
6.3.2 行程问题
一、本课重点,请你理一理
1.基本公式:__路程=速度×时间__
2.基本类型: 相遇问题、 追及问题、环形跑道问题、航行问题、飞行问题。 3.航行问题的数量关系:
(1)顺水航行的路程=逆水航行的路程 (2)顺水速度=静水速度+水速
逆水速度=静水速度-水速 4.飞行问题基本等量关系: 顺风速度=无风速度+风速 逆风速度=无风速度-风速
二、基础题,请你做一做
1、甲的速度是每小时行4千米,则他x小时行( 4x )千米.
2、乙3小时走了x千米,则他的速度是每小时行( x )千米.
33、甲每小时行4千米,乙每小时行5千米,则甲、乙一小时共行( 9 )千米,y小时共行( 9y )千米. 4、某一段路程 x 千米,如果火车以49千米/时的速度
行驶,那么火车行完全程需要(
x49 )小时.
三、综合题,请你试一试
1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇? 解:易知摩托车的速度是每小时45千米。 设经过x小时两人相遇,依题意,得
15x+45x=180
解得x=3
答:经过3小时两人相遇。
2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时, 问摩托车经过多少时间追上自行车?
解:设摩托车经过x小时追上自行车,依题意,得
45x—15(x+2)=180
解得x=7
答:摩托车经过7小时追上自行车
3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4小时,逆风飞行需要5小时 .如果已知风速为30km/h,求A,B两个城市之间的距离.
解:设飞机无风时的速度为x 千米/小时,依题意,得
4(x?30)?5(x?30)
解得x=270
所以(270+30)× 4=1200(千米) 答:A,B两个城市之间的距离为1200千米。
4.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行............,甲的速度为100米/分,乙的速度是甲速度的3倍,问(1)经过多少时间
2后两人首次相遇(2)第二次相遇呢? 解:乙的速度是100?32 =150米/分。
(1)
设经过x分钟后两人首次相遇,依题意,得
150x?100x?400 解得x=8
(2)
设经过x分钟后两人第二次相遇,依题意,
得
150x?100x?800 解得x=16
答:(1)设经过8分钟后两人首次相遇; (2)设经过16分钟后两人第二次相遇。 注:环形跑道问题,通常转化为追及、相遇问题。
6.3.3调配问题
一、本课重点,请你理一理
初步学会列方程解调配问题各类型的应用题;各部分量之和等于总量是解决这类应用题的基关键所在. 二、基础题,请你做一做
1.某人用三天做零件330个,已知第二天比第一天多做3个,第三天做的是第二天的2倍少3个,则他第一天做了多少个零件?
解:设他第一天做零件 x 个,则他第二天做零件 __(x+3)________个,
第三天做零件__[2(x+3)?3_]_______个,根据“某人用三天做零件330个”
列出方程得:___x+x+3+_2(x+3)?3=330__. 解这个方程得:____x=84__________. 答:他第一天做零件 ___84_____ 个.
2.初一甲、乙两班各有学生48人和52人,现从外校转来12人插入甲班 x 人,其余的都插入乙班,问插入后,甲班有学生__48+x__人,乙班有学生 _52+12?x______人,若已知插入后,甲班学生人数的3倍比乙班学生人数的2倍还多4人,列出方程是:
__3(48+x)=2(52+12?x)+4__ 三、综合题,请你试一试
1、有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人? 解:设应调往甲处x人,依题意,得
23?x?2(17?20?x)
解得x=17
答:应调往甲处17人,调往乙处3人。
2.配制一种混凝土,水泥、沙、石子、水的质量比是1:3:10:4,要配制这种混凝土360千克,各种原料分别需要多少千克?
解:设有水泥x千克,依题意得
x?3x?10x?4x?360
解得x=20
所以沙有20×3=60千克 石子有20×10=200千克 水有20×4=80千克
答:水泥、沙、石子、水分别需要20千克、60千克、200千克、80千克。
3、为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。若某用户五月份的水费为平均每吨1.5元,问,该用户五月份应交水费多少元? 解:设该用户五月份共用水x吨,依题意,得
20?1.2?2(x?20)?1.5x
解得x=32 水费为1.5?32?48 答:该用户五月份应交水费48元
注:本题不是“求什么设什么”。所以同学们要学会设一个合适的未知量,以便于列方程。有了这道题目的解答,请同学们解决《基础训练》P42,12题和P44,19题。
6.3.4 工程问题
一、本课重点,请你理一理