内容发布更新时间 : 2024/11/9 0:32:59星期一 下面是文章的全部内容请认真阅读。
此文档仅供收集于网络,如有侵权请联系网站删除
【含义】 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】 草总量=原有草量+草每天生长量×天数 【解题思路和方法】 解这类题的关键是求出草每天的生长量。
例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完? 解 草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛? 设每头牛每天吃草量为1,按以下步骤解答: (1)求草每天的生长量
因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以 1×10×20=原有草量+20天内生长量 同理 1×15×10=原有草量+10天内生长量 由此可知 (20-10)天内草的生长量为 1×10×20-1×15×10=50
因此,草每天的生长量为 50÷(20-10)=5 (2)求原有草量
原有草量=10天内总草量-10内生长量=1×15×10-5×10=100 (3)求5 天内草总量
5 天内草总量=原有草量+5天内生长量=100+5×5=125 (4)求多少头牛5 天吃完草
因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。 因此5天吃完草需要牛的头数 125÷5=25(头) 答:需要5头牛5天可以把草吃完。
例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?
解 这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1,按以下步骤计算: (1)求每小时进水量
因为,3小时内的总水量=1×12×3=原有水量+3小时进水量 10小时内的总水量=1×5×10=原有水量+10小时进水量 所以,(10-3)小时内的进水量为 1×5×10-1×12×3=14 因此,每小时的进水量为 14÷(10-3)=2 (2)求淘水前原有水量
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
原有水量=1×12×3-3小时进水量=36-2×3=30 (3)求17人几小时淘完
17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是 30÷(17-2)=2(小时) 答:17人2小时可以淘完水。
20 鸡兔同笼问题
【含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题: 假设全都是鸡,则有
兔数=(实际脚数-2×鸡兔总数)÷(4-2) 假设全都是兔,则有
鸡数=(4×鸡兔总数-实际脚数)÷(4-2) 第二鸡兔同笼问题: 假设全都是鸡,则有
兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2) 假设全都是兔,则有
鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。
例1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?
解 假设35只全为兔,则
鸡数=(4×35-94)÷(4-2)=23(只) 兔数=35-23=12(只) 也可以先假设35只全为鸡,则
兔数=(94-2×35)÷(4-2)=12(只) 鸡数=35-12=23(只) 答:有鸡23只,有兔12只。
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩? 解 此题实际上是改头换面的“鸡兔同笼”问题。“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。假设16亩全都是菠菜,则有 白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩) 答:白菜地有10亩。
例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。问作业本和日记本各买了多少本?
解 此题可以变通为“鸡兔同笼”问题。假设45本全都是日记本,则有 作业本数=(69-0.70×45)÷(3.20-0.70)=15(本) 日记本数=45-15=30(本)
答:作业本有15本,日记本有30本。
例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 解 假设100只全都是鸡,则有
兔数=(2×100-80)÷(4+2)=20(只) 鸡数=100-20=80(只) 答:有鸡80只,有兔20只。
例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人? 解 假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。因此,共有小和尚 (3×100-100)÷(3-1/3)=75(人) 共有大和尚 100-75=25(人) 答:共有大和尚25人,有小和尚75人。
21 方阵问题
【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
【数量关系】 (1)方阵每边人数与四周人数的关系: 四周人数=(每边人数-1)×4 每边人数=四周人数÷4+1
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
(2)方阵总人数的求法:
实心方阵:总人数=每边人数×每边人数 空心方阵:总人数=(外边人数)-(内边人数) 内边人数=外边人数-层数×2 (3)若将空心方阵分成四个相等的矩形计算,则: 总人数=(每边人数-层数)×层数×4
【解题思路和方法】 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?
解 22×22=484(人)
答:参加体操表演的同学一共有484人。
例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。 解 10*10-(10-3×2)*(10-3×2)=84(人) 答:全方阵84人。
例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人? 解 (1)中空方阵外层每边人数=52÷4+1=14(人) (2)中空方阵内层每边人数=28÷4-1=6(人) (3)中空方阵的总人数=14×14-6×6=160(人) 答:这队学生共160人。
例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?
解 (1)纵横方向各增加一层所需棋子数=4+9=13(只)
(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只) (3)原有棋子数=7×7-9=40(只) 答:棋子有40只。
例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?
解 第一种方法: 1+2+3+4+5=15(棵) 第二种方法: (5+1)×5÷2=15(棵) 答:这个三角形树林一共有15棵树。
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
22 商品利润问题
【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。 【数量关系】 利润=售价-进货价
利润率=(售价-进货价)÷进货价×100% 售价=进货价×(1+利润率) 亏损=进货价-售价
亏损率=(进货价-售价)÷进货价×100%
【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。
例1 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?
解 设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了
1-(1+10%)×(1-10%)=1% 答:二月份比原价下降了1%。
例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?
解 要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的, 所以成本为 52÷80%÷(1+30%)=50(元)
可以看出该店是盈利的,盈利率为 (52-50)÷50=4% 答:该店是盈利的,盈利率是4%。
例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?
解 问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即 0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元) 剩下的作业本每册盈利 7.20÷[1200×(1-80%)]=0.03(元) 又可知 (0.25+0.03)÷[0.25×(1+40%)]=80% 答:剩下的作业本是按原定价的八折出售的。
只供学习与交流