基于51单片机的智能台灯设计 - 图文 下载本文

内容发布更新时间 : 2024/11/17 15:38:46星期一 下面是文章的全部内容请认真阅读。

单片机是美国STC公司最新推出的一种新型51内核的单片机。片内含有Flash程序存储器、SRAM、UART、SPI、PWM等模块。

(一)STC89C51主要功能、性能参数如下:

(1)内置标准51内核,机器周期:增强型为6时钟,普通型为12时钟; (2)工作频率范围:0~40MHZ,相当于普通8051的0~80MHZ; (3)STC89C51RC对应Flash空间:4KB; (4)内部存储器(RAM):512B; (5)定时器\\计数器:3个16位; (6)通用异步通信口(UART)1个; (7)中断源:8个;

(8)有ISP(在系统可编程)\\IAP(在应用可编程),无需专用编程器\\仿真器; (9)通用I\\O口:32\\36个; (10)工作电压:3.8~5.5V;

(11)外形封装:40脚PDIP、44脚PLCC和PQFP等。 (二)STC89C51单片机的引脚说明: VCC:供电电压。 GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3.0 RXD(串行输入口) P3.1 TXD(串行输出口) P3.2 /INT0(外部中断0) P3.3 /INT1(外部中断1) P3.4 T0(记时器0外部输入) P3.5 T1(记时器1外部输入)

P3.6 /WR(外部数据存储器写选通) P3.7 /RD(外部数据存储器读选通)

I/O口作为输入口时有两种工作方式,即所谓的读端口与读引脚。读端口时

13

实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器。只有读端口时才真正地把外部的数据读入到内部总线。上面图中的两个三角形表示的就是输入缓冲器CPU将根据不同的指令分别发出读端口或读引脚信号以完成不同的操作。这是由硬件自动完成的,不需要我们操心,1然后再实行读引脚操作,否则就可能读入出错,为什么看上面的图,如果不对端口置1端口锁存器原来的状态有可能为0Q端为0Q^为1加到场效应管栅极的信号为1,该场效应管就导通对地呈现低阻抗,此时即使引脚上输入的信号为1,也会因端口的低阻抗而使信号变低使得外加的1信号读入后不一定是1。若先执行置1操作,则可以使场效应管截止引脚信号直接加到三态缓冲器中实现正确的读入,由于在输入操作时还必须附加一个准备动作,所以这类I/O口被称为准双向口。89C51的P0/P1/P2/P3口作为输入时都是准双向口。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 XTAL2:来自反向振荡器的输出。 (三)STC89C51单片机最小系统:

最小系统包括单片机及其所需的必要的电源、时钟、复位等部件,能使单片机始终处于正常的运行状态。电源、时钟等电路是使单片机能运行的必备条件,可以将最小系统作为应用系统的核心部分,通过对其进行存储器扩展、A/D扩展等,使单片机完成较复杂的功能。

STC89C51是片内有ROM/EPROM的单片机,因此,这种芯片构成的最小系统简单﹑可靠。用STC89C52单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,结构如图3.3所示,由于集成度的限制,最小应用系统只能用作一些小型的控制单元。

时钟电路

复位电路 STC89C51单片机 I/O图3.3 单片机最小系统原理框图

14

(1) 时钟电路

STC89C51单片机的时钟信号通常有两种方式产生:一是内部时钟方式,二是外部时钟方式。内部时钟方式如图3.4所示。在STC89C51单片机内部有一振荡电路,只要在单片机的XTAL1(18)和XTAL2(19)引脚外接石英晶体(简称晶振),就构成了自激振荡器并在单片机内部产生时钟脉冲信号。图中电容C1和C2的作用是稳定频率和快速起振,电容值在5~30pF,典型值为30pF。晶振CYS的振荡频率范围在1.2~12MHz间选择,典型值为12MHz和6MHz。 C21830pFY1C311.0592MHz19 30pF图3.4 STC89C51内部时钟电路

(2) 复位电路

当在STC89C51单片机的RST引脚引入高电平并保持2个机器周期时,单片机内部就执行复位操作(若该引脚持续保持高电平,单片机就处于循环复位状态)。

复位电路通常采用上电自动复位和按钮复位两种方式。

最简单的上电自动复位电路中上电自动复位是通过外部复位电路的电容充放电来实现的。只要Vcc的上升时间不超过1ms,就可以实现自动上电复位。

除了上电复位外,有时还需要按键手动复位。本设计就是用的按键手动复位。按键手动复位有电平方式和脉冲方式两种。其中电平复位是通过RST(9)端与电源Vcc接通而实现的。按键手动复位电路见图3.5。时钟频率用11.0592MHZ时C取10uF,R取10kΩ。

VCCS49C1R110uF10k 图3.5 STC89C51复位电路

(四) STC89C51中断技术概述 中断技术主要用于实时监测与控制,要求单片机能及时地响应中断请求源提出的服务请求,并作出快速响应、及时处理。这是由片内的中断系统来实现的。当中断请求源发出中断请求时,如果中断请求被允许,单片机暂时中止当前正在执行的主程序,转到中断服务处理程序处理中断服务请求。中断服务处理程序处理完中断服务请求后,再回到原来被中止的程序之处(断点),继续执行被中断的主程序。

图3.6为整个中断响应和处理过程。

15

图3.6 中断响应和处理过程

如果单片机没有中断系统,单片机的大量时间可能会浪费在查询是否有服务请求发生的定时查询操作上。采用中断技术完全消除了单片机在查询方式中的等待现象,大大地提高了单片机的工作效率和实时性。

3.2 LED驱动电路

常见的三极管为9012、s8550、9013、s8050.单片机应用电路中三极管主要的作用就是开关作用。其中9012与8550为pnp型三极管,可以通用。其中9013与8050为npn型三极管,可以通用。

区别引脚:三极管向着自己,引脚从左到右分别为ebc,原理图中有箭头的一端为e,与电阻相连的为b,另一个为c。箭头向里指为PNP(9012或8550),箭头向外指为NPN(9013或8050)。 三极管的工作原理

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 (1)电流放大

下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源 能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变 化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信

16