内容发布更新时间 : 2024/11/2 21:34:09星期一 下面是文章的全部内容请认真阅读。
第三章习题解答
3.2 求下列方波形的傅里叶变换。 (a) 解:
f1(t)F1(j?)??f1(t)e?j?tdt0t??1?e?j?tdt?0t?ej??j?tt1
0t1?e?j?t?t?j???tSa()e2j?2t0
(b) 解:
tF2(?)????1?e0ttt0?e?j?tdt?j?ttt1????tde?j?t?(?j?)0f2(t)1?j?t?edt?j?t0001
???j??j[te?j?tt??e?j?tdt]12?e?j?t?(e??(e?j?t?1)?j?tt1?j?t??2?j??e?1)0t
(c) 解:
F3(?)??cos?11?2t?e?j?tdt?f3(t)1(e?e)?e?j?tdt?12??11j(??)t?j(??)t2??(e?e2)dt?12??1jt2?jt211?1cos?2t
?1t01?j(??)t11?e22j(???)2??112j(??)2?e?j(??)t2??1?????)?j(??)?j(??)j(??)1j(?11??[e2?e2]??[e2?e2] ????2j??2j221sin(??)sin(??)cos??(??)?cos??(??)??cos?2222 ???????2?????()??2()2??22222
(d)解:
????F4(?)??sin?t?eT2T?2f3(t)?j?tdt1sin?t1Tj?t?j?t?j?t2?(e?e)edtT??2j2?1j(???)t?j(???)t(e?e)dt?2jT2?T2T2T?2?T2t0T2
?1?ej(???)t2(???)ej(???)T1?e?j(???)t2(???)2T2?T2?1??e2j?j(???)2?j(???)T?ej(???)T?e2j?j(???)2?j(???)T2TTsin[(???)]sin[(???)]22??j(???)j(???)
3.3依据上题中a,b的结果,利用傅里叶变换的性质,求题图3.3所示各信号的傅里叶变换. (a) 解:f1(t)?f11(?t)?f11(t)
f1(t)1f11(t)就是3.2中(a)的f1(t)
t如果f1(t)?F(?),则f1(?t)?F(??)
?t0t?f1(t)?f11(?t)?f11(t)?F11(??)?F11(?)???Sa(?1??2)?[ej??2?e?j??2]??tjsin(??2sin()???2)???24?? sin2()j?2(b) 解:f2(t)?g?(t)?g?(t),而g?(t)??Sa(??2)
f2()t?F2(?)??Sa(3?)?2Sa(?)
如利用3.2中(a)的结论来解,有:
12f2(t)?f1?(t?3)?f1?'(t?1),其中???,?'?2.
?3?2?10123t?F2(?)?ej3??F1?(?)?ej??F1?'(?)??Sa(3?)?2Sa(?)
(如f(t)?F(?),则f(t?t0)?ej?t0F(?))
(c) 解:f3(t)?2f22(t??)?2f22(?t??),??1 由3.2(b)知,F22(?)?1??2(e?j?t?j?te?j?t?1)
2f3(t)?F3(?)?2ej?tF22(?)?2e?j?tF22(??),??1?2ej????
1??4?(e?j??j?e?j??1)?2e?j??2?2ej?1?2?(ej??j?ej??1) 2?24??2j?2?2?24?2j??2ej?t?1?201?2?2cos???2(1?cos?)t(d) 解:设 f(t)??1,0?t??
f4()t1?2t0,else由3.2知,F(?)???2(e?j?t?j?te?j?t?1)
02tt?1而本题中,f4(t)?f(0.5t)?f(?0.5t) 由傅里叶变换的尺度变换特性有:
b1?j?af4(t)?f(at?b)?e?F(?)
a在本题中,a=0.5,b=0.
?F4(?)?2F(2?)?2F(?2?)?224??2??jej2?t?e?j2?tj??2()?(ej2?t?e?j2?t)??2j?2jj?cos(2??)?2sin(2??)(e?j2?t?j2?te?j2?t?1)?12(ej2?t?j2?tej2?t?1)
???
1,0?t?1(e) 解:设f(t)?
0,else由3.2知,F(?)?Sa()ef5(t)sin6?t1t?10?2?j?21
?1根据f5(t)的波形,将f5(t)用f(t)表示为