内容发布更新时间 : 2025/1/3 18:36:03星期一 下面是文章的全部内容请认真阅读。
数列?an?为等差数列,且首项为1,公差为a2?a1?1,所以an?n; (2)∵2nbn?1??n?1?bn, ∴
bn?11bn?bb11n?1?2n?n?1?,∴数列?n??n??是以1?1为首项,2为公比的等比数列, bn?1nn???1??2??,从而bnn?2n?1,
T12n?1n?20?21?322??2n?2?n12n?1,2Tn?12?222?323??n?12n?1?n2n, ∴1Tn?1?122?122??1n1?12n22?nn?1?n?1?12n?2?n?22n, 2所以Tn?2n?4?2n?1. 18.解:打5,6,7,8折的概率分别为
13?2?16,23?2?13,13,16, (1)事件A为“三位顾客中恰有两位顾客打6折”,
2所以P?A??C2?3?1??3?2?3?29;
(2)X的可能取值为2000,2200,2400,2600,2800,3000,3200,
P?X?2000??16?16?136,P?X?2200??16?13?2?19,P?X?2400??16?13?2?1123?3?9,
P?X?2600??13?13?2?11105111126?6?2?36?18,P?X?2800??3?3?3?6?2?9 ,
P?X?3000??16?13?2?19,P?X?3200??1116?6?36,
所以X的分布列为
X 2000 2200 2400 2600 2800 3000 3200 P 1125236 9 9 18 9 19 136 E?X??2000?1136?2200?9?2400?29?2600?518?2800?29?3000?19?3200?136?2600元.
19.(1)证明:连接AC1,
∵A1BC11D1?ABCD为四棱台,四边形A1B1C1D1四边形ABCD,
∴
A1B1AB?12?AC11AC,由AC?2得,AC11?1, 又∵A1A?底面ABCD,∴四边形A1ACC1为直角梯形,可求得C1A?2, 又AC?2,M为CC1的中点,所以AM?C1C,
又∵平面A1ACC1?平面C1CDD1,平面A1ACC1?平面C1CDD1?C1C, ∴AM?平面C1CDD1,D1D?平面C1CDD1, ∴AM?D1D; (2)解:
在?ABC中,AB?23,AC?2,?ABC?300,利用余弦定理可求得,BC?4或BC?2,由于
AC?BC,所以BC?4,从而AB2?AC2?BC2,知AB?AC,
如图,以A为原点建立空间直角坐标系,A?0,0,0?,B?23,0,0?,C?0,2,0?,C?33?1?0,1,3?,M??0,2,2??,
??由于AM?平面C1CDD?31,所以平面C1CDD1的法向量为AM???0,2,3??2??, ?设平面B1BCC1的法向量为m??x,y,z?,BC???23,2,0?,CC1??0,?1,3?,
???BCm?0????23x?2y?0设y?3,所以m?1,3,1, ?CCm?0?1???y?3z?0???33cosm,AM?mAM?32mAM?25?3?255, ∴sinm,AM?55, 即二面角B51?CC1?D1的正弦值为5. 20.解:(1)由
ca?12得3a2?4b2, 把点???1,312????代入椭圆方程为
a2?94b2?1,∴19a2?3a2?1得a2?4, ∴b2?3,椭圆的标准方程为x2y24?3?1; x2(2)由(1)知4?y23?1,c?1, PF??x?1?2?y2??x?1?23???1?x2?4??1x2?2x?4?1x?4,
?42?而PP??4?x,∴
PPPF?2为定值;
②设Q?4,m?若m?0,则MF?NF?4, 若m?0,因为A??2,0?,B?2,0?, 直线QA:y?m6?x?2?,直线QB:y?m2?x?2?, ??y?m?x?2?由??627?m2x2?4m2x?4m2?108?0, ?x22整理得???4?y?3?1∴??2?x4m2?108?2m2?54M?27?m2,得x?27?m2, ??由?y?m?2?x?2?3?m2x2?4m2x?4m2??x22整理得??12?0, ??4?y3?1∴2x4m2?122m2?6N?3?m2,得xN?3?m2,
由①知MF?∴
114?x,NF???4?xN?, M?22??????x?xN1??2m?542m?6?48m48MF?NF?4?M?4????4??4?????4?28122?27?m23?m2?m?30m?812???m?2?30?m??222,
∵m2?81m2?281?18(当且仅当m2?9即m??3时取等号) ∴48?1,即MF?NF的最小值为3.
m2?81m2?3021.解:(1)f??x??1a?x?1??axx2??2?a?xx??x?1?2??1x?x?1?2?x?0?, 令p?x??x2??2?a?x?1,
①2?a?0即a?2时,p?x??1,故f??x??0恒成立,所以f?x?在?0,???上单调递增; ②当???2?a?2?4?0即0?a?4时,f??x??0恒成立,所以f?x?在?0,???上单调递增;
③当a?4时,由于f??x??0的两根为x?a?2?a2?4a2?0,
所以f?x?在??a?2?a2?4a??a?2?a2?4a?0,?,????为增函数,在?2?,????2????a?2?a2?4a?,a?2?a2?4a??为减函数,
?22??综上:a?4时,函数f?x?在?0,???为增函数;
时,函数f?x?在??a?2?a2?4a??a?2?a2a?4?4a??0,?,?,???为增函数,在?2????2???a?2?a2??4a?,a?2?a2?4a??22??为减函数;
?(2)由(1)知a?4,且x1?x2?a?2,x1x2?1,
∴f?x??f?xax1ax2ax1?x2?1??ax2?x1?1?12??lnx1?x1?lnx2?x?lnx1x2???a,
1?2?1?x1?1??x2?1?
aa?2而f??x1?x2??a?2?a?22?2???f??2???ln2?a?2?lna?22??a?2?, 2?1∴f??x1?x2?a?2aa?2a?2???f?x1??f?x2?2?ln2?a?2?2?ln2?2?2, 设h?a??lna?22?a2?2?a?4?,则h??a??2114?aa?22?2?2?a?2??0, 所以h?a?在?4,???上为减函数,又h?4??0,所以h?a??0, 所以f??x1?x2?f?x1???2???f?x2?2. 22.(1)解:直线l和圆C?2?y22的普通方程分别为x?y?b?0,?x?2?4,
?AOB?900,∴直线l过圆C2的圆心C2??2,0?,所以?2?b?0,b?2;
?x??2?2(2)证明:曲线C2???2t1:x?ay?a?0?,可知直线l的参数方程为(t为参数)代入曲线C得?1??y?22t12t2????22?2a?t?4?0,??1a2?2???4a?0恒成立, ?2设M、N两点对应的参数分别为t1、t2,则t41t2?1?8, 2所以C2MC2N?t1t2?8为定值.
23.解:(1)x?1?x2?1?0?x?1?x2?1,
①??x??1?x?1?x2?1??1?x?2,②??x??1??x?1?x2?1??, 所以,不等式的解集为?x|?1?x?2?;
(2)g?x??x?x?m?1??x?x?m?1??x?x?m?1?m?1, 当且仅当??x??x?m?1??0时取等号,∴1?m?1?0, 得m??2,