互感器电气试验标准化作业指导书 下载本文

内容发布更新时间 : 2024/6/9 5:27:32星期一 下面是文章的全部内容请认真阅读。

www.whhzdl.com

试验时电压从零向上递升,以电流为基准,读取电压值,直至额定电流。若对特性曲线有特殊要求而需要继续增加电流时,应迅速读数,以免绕组过热。按图2所示接线。

3.5 测量结果判断

当电流互感器一次绕组有匝间短路时,其励磁特性在开始部分电流较正常的略低,如图3中曲线2或3所示,因此在录制励磁特性时,在开始部分多测几点。当电流互感器一次电流较大,励磁电压也高时,可用2(b)的试验接线,输出电压可增至500V左右。但所读取的励磁电流值仍只为毫安级,在试验时对仪表的选用要加以注意。

根据规程规定,电流互感器只对继电保护有特性要求时才进行该项试验,但在调试工作中,当对测量用的电流互感器发生怀疑时,也可测量该电流互感器的励磁特性,以供分析。

4. 电流比效对试验 4.1 该项目适用范围 电流互感器的交接试验 4.2 试验时使用的仪器

电压表、电流表、升流器、标准电流互感器、调压器等 4.3 测量步骤

www.whhzdl.com

理想的电流互感器的电流比应与匝数比成反比,即: I1 / I2=N2 / N1

式中:I1— 一次电流(A);I2—M次电流(A);N1— 一次绕组匝数;N2— 二次绕组匝数。

电流比测量接线见图4,如被测互感器TAX实际的电流比为 KX=I1X / I2X 标准电流互感器的变流比为 KN=I1N / I2N

已知被试电流互感器的铭牌标定电流比为K1X。

当试验时,如标准电流互感器选用与被试互感器相同的变比时,则有K1X=KN,电流比误差就为:γK=(I2X-I2N)/I2N

5. 一、二次绕组直流电阻测量 5.1 该项目适用范围 电流互感器的交接试验 5.2 试验时使用的仪器

QJ44型双臂电桥、甲电池或直流电阻测试仪

www.whhzdl.com

5.3 测量步骤

以QJ44型双臂电桥为例,测量步骤如下:

测量前,首先调节电桥检流计机械零位旋钮,置检流计指针于零位。接通测量仪器电源,具有放大器的检流计应操作调节电桥电气零位旋钮,置检流计指针于零位。

接人被测电阻时,双臂电桥电压端子P1、P2所引出的接线应比由电流端子Cl、C2所引出的接线更靠近被测电阻。

测量前首先估计被测电阻的数值,并按估计的电阻值选择电桥的标准电阻RN和适当的倍率进行测量,使“比较臂”可调电阻各档充分被利用,以提高读数的精度。测量时,先接通电流回路,待电流达到稳定值时,接通检流计。调节读数臂阻值使检流计指零。被测电阻按下式计算

被测电阻=倍率×读数臂指示

如果需要外接电源,则电源应根据电桥要求选取,一般电压为2~4V,接线不仅要注意极性正确,而且要接牢靠,以免脱落致使电桥不平衡而损坏检流计。

测量结束时,应先断开检流计按钮,再断开电源,以免在测量具有电感的直流电阻时其自感电动势损坏检流计。

如用直流电阻测试仪,使用说明书方法进行操作。 6. tgδ及电容量(20kV及以上)测量 6.1 该项目适用范围

35Kv及以上电流互感器的交接、大修后和预防性试验 6.2 试验时使用的仪器 介损测试仪。

www.whhzdl.com

6.3 测量步骤

一般采用正接线法测量,试验接线和测试步骤参见测试仪器的使用说明书。 操作及注意事项:

测量tgδ是一项高电压试验,电桥桥体外壳应用足够截面的导线可靠接地,对桥体或标准电容器的绝缘应保持良好状态。反接线测量时,桥体内部及标准电容器外壳均带高压,应注意安全距离。

6.4 影响tgδ的因素和结果的分析

在排除外界干扰,正确地测出tgδ值后,还需对tgδ的数值进行正确分析判断。为此,就要了解tgδ与哪些因素影响有关。根据tgδ测量的特点,除不考虑频率的影响(因施加电压频率基本不变)外,还应注意以下几个方面的问题。

(1)、温度的影响

温度对tgδ有直接影响,影响的程度随材料、结构的不同而异。一般情况下,tgδ是随温度上升而增加的。现场试验时,设备温度是变化的,为便于比较,应将不同温度下测得的tgδ值换算至20℃(见附录B)。例如,25℃时测得绝缘油的介质损失角为0.6%,查附录B得25℃时的系数为0.79,因此20℃时的绝缘油介质损失角即为tgδ20=0.6%×0.78=0.47%。

应当指出,由于被试品真实的平均温度是很难准确测定的,换算系数也不是十分符合实际,故换算后往往有很大误差。因此,应尽可能在10~30℃的温度下进行测量。

有些绝缘材料在温度低于某一临界值时,其tgδ可能随温度的降低而上升;而潮湿的材料在0℃以下时水分冻结,tgδ会降低。所以,过低温度下测得的tgδ不能反映真实的绝缘状况,容易导致错误的结论,因此,测量tgδ应在不低于5℃时进行。

www.whhzdl.com

油纸绝缘的介质损耗与温度关系取决于油与纸的综合性能。良好的绝缘油是非极性介质,油的电 主要是电导损耗,它随温度升高而增大。而纸是极性介质,其年 由偶极子的松弛损耗所决定,一般情况下,纸的培 在一40~60℃的温度范围内随温度升高而减小。因此,不含导电杂质和水分的良好油纸绝缘,在此温度范围内其边 没有明显变化。对于电流互感器与油纸套管,由于含油量不大,其主绝缘是油纸绝缘。因此,对把 进行温度换算时,不宜采用充油设备的温度换算方式,因为其温度换算系数不符合油纸绝缘的tgδ随温度变化的真实情况。

当绝缘中残存有较多水分与杂质时,tgδ与温度关系就不同于上述情况,tgδ随温度升高明显增加。如两台220kV电流互感器通入50%额定电流,加温9h,测取通入电流前后tgδ的变化,tgδ初始值为0.53%的一台无变化,tgδ初始值为0.8%的一台则上升为1.1%。实际上初始值为0.8%的已属非良好绝缘,故tgδ随温度上升而增加。说明当常温下测得的tgδ较大,在高温下tgδ又明显增加时,则应认为绝缘存在缺陷。

(2)、试验电压的影响