内容发布更新时间 : 2025/3/15 10:20:39星期一 下面是文章的全部内容请认真阅读。
卡尔曼滤波算法实现代码
C++实现代码如下:
============================kalman.h================================
// kalman.h: interface for the kalman class. //
//////////////////////////////////////////////////////////////////////
#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_
#if _MSC_VER > 1000 #pragma once
#endif // _MSC_VER > 1000
#include
class kalman { public:
void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state;
CvMat* process_noise; CvMat* measurement; const CvMat* prediction;
CvPoint2D32f get_predict(float x, float y);
kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); };
#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
============================kalman.cpp================================
#include \#include
/* tester de printer toutes les valeurs des vecteurs/* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */
CvRandState rng; const double T = 0.1;
kalman::kalman(int x,int xv,int y,int yv) {
cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 );
process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;
*/
/* create matrix data */ const float A[] = { 1, T, 0, 0, 0, 1, 0, 0, 0, 0, 1, T, 0, 0, 0, 1 };
const float H[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };
const float P[] = {
pow(320,2), pow(320,2)/T, 0, 0,
pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0, 0, 0, pow(240,2), pow(240,2)/T,
0, 0, pow(240,2)/T, pow(240,2)/pow(T,2) };
const float Q[] = {
pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T, 0, 0,
0, 0, pow(T,3)/3, pow(T,2)/2, 0, 0, pow(T,2)/2, T };
const float R[] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };
cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
cvZero( measurement );
cvRandSetRange( &rng, 0, 0.1, 0 ); rng.disttype = CV_RAND_NORMAL;
cvRand( &rng, state );
memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));
memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );
/* choose initial state */
state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y;
state->data.fl[3]=yv;
cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;
cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise ); }
CvPoint2D32f kalman::get_predict(float x, float y) {
/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;
/* predict point position */ /* x'k=A鈥k+B鈥k P'k=A鈥k-1*AT + Q */
cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );
cvRand( &rng, measurement );
/* xk=A?xk-1+B?uk+wk */
cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );
/* zk=H?xk+vk */