内容发布更新时间 : 2025/1/23 0:30:26星期一 下面是文章的全部内容请认真阅读。
第五章 相交线与平行线检测题
8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为( )
线 号 学 题 答 得 名封不 姓 内 线 封 密 级 班 密 校学 一、选择题(每小题3分,共30分)
1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行; ③相等的角是对顶角;④同位角相等.其中错误的有( ) A.1个 B.2个 C.3个 D.4个
2.点P是直线l外一点,A为垂足, ,且PA=4 cm,则点P到直线l的距离( ) A.小于4 cm B.等于4 cm C.大于4 cm D.不确定 3.(2013?安徽)如图,AB∥CD,∠A+∠E=75°,则∠C为( ) A.60° B.65° C.75° D.80°
第3题图 第4题图 4.(2013?襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为( A.55° B.50° C.45° D.40° 5.(2013?孝感)如图,∠1=∠2,∠3=40°,则∠4等于( ) A.120° B.130° C.140° D.40° 6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有( ) A.1个 B.2个 C.3个 D.4个
第5题图 第6题图
7.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )
A.∠1=∠2 B.∠3=∠4 C.∠5=∠
D.∠+∠BDC=180°
第
7题图 第 8 题图
第1页,共8页 A.2个 B.3个 C.4个 D.5个
9. 下列条件中能得到平行线的是( )
①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线. A.①② B.②③ C.② D.③ 10. 两平行直线被第三条直线所截,同位角的平分线( ) A.互相重合 B.互相平行 C.互相垂直 D.相交
二、填空题(共8小题,每小题3分,满分24分)
11.如图,直线a、b相交,∠1=36°,则∠2= .
第11题图
12.(2013?镇江)如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°, 则∠B= °.
第12题图 第13题图
第14题图
13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道
最短,这样设计的依据是 .
14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是 .
15.(2013?江西)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,
则∠B的度数为 .
第2页,共8页
)
21.(8分)已知:如图,∠BAP+∠APD =180°,∠1 =∠2.求证:∠E =∠F.
第15题图 第16题图
线 号 学 题 答 得 名封不 姓 内 线 封 密 级 班 密 校学 16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= . 17.如图,直线a∥b,则∠ACB= .
第17题图 第18题图
18.(2012?郴州)如图,已知AB∥CD,∠1=60°,则∠2= 度. 三、解答题(共6小题,满分46分)
19.(7分)读句画图:如图,直线CD与直线AB相交于C,
根据下列语句画图:
(1)过点P作PQ∥CD,交AB于点Q; (2)过点P作PR⊥CD,垂足为R;
(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.
第19题图
20.(7分)如图,方格中有一条美丽可爱的小金鱼.
(1)若方格的边长为1,则小鱼的面积为 ;
(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)
第20题图
第3页,共8页
22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED ∥FB.
23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.
第23题图
24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.
第4页,共8页
线 号 学 题 答 得 名封不 姓 内 线 封 密 级 班 密 校学
第五章 相交线与平行线检测题参考答案 1.B 解析:①是正确的,对顶角相等;
②正确,在同一平面内,垂直于同一条直线的两直线平行; ③错误,角平分线分成的两个角相等但不是对顶角; ④错误,同位角只有在两直线平行的情况下才相等. 故①②正确,③④错误,所以错误的有两个, 故选B.
2. B 解析:根据点到直线的距离为点到直线的垂线段的长度(垂线段最短), 所以点P到直线l的距离等于4 cm,故选B. 3. C 解析:∵∠A+∠E=75°, ∴∠EOB=∠A+∠E=75°.
∵AB∥CD,∴∠C=∠EOB=75°,故选C.
4. A 解析:∵CD∥AB,∴∠ABC+∠DCB=180°. ∵∠BCD=70°,∴∠ABC=180°-70°=110°. ∵BD平分∠ABC,∴∠ABD=55°.
5. C 解析:如题图所示,∵∠1=∠2, ∴a∥b,∴∠3=∠5.
∵∠3=40°,∴∠5=40°, ∴∠4=180°-∠5=180°-40°=140°, 故选C.
6. C 解析:∵ AB∥CD,∴ ∠ABC=∠BCD. 设∠ABC的对顶角为∠1,则∠ABC=∠1. 又∵ AC⊥BC,∴ ∠ACB=90°,
∴ ∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°, 因此与∠CAB互余的角为∠ABC,∠BCD,∠1. 故选C.
7. A 解析:选项B中,∵ ∠3=∠4,∴ AB∥CD (内错角相等,两直线平行),故正确;
选项C中,∵ ∠5=∠B,∴ AB∥CD (内错角相等,两直线平行),故正确; 选项D中,∵ ∠B+∠BDC=180°,∴ AB∥CD(同旁内角互补,两直线平行),故正确;
而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵ ∠1=∠2,∴ AC∥BD,故A错误.选A.
8. D 解析 :如题图所示,∵ DC∥EF,∴ ∠DCB=∠EFB. ∵ DH∥EG∥BC,
∴ ∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME, 故与∠DCB相等的角共有5个.故选D.
9. C 解析 :结合已知条件,利用平行线的判定定理依次推理判断. 10. B 解析:∵ 两条平行直线被第三条直线所截,同位角相等, ∴ 它们角的平分线形成的同位角相等,∴ 同位角相等的平分线平行.
第5页,共8页 故选B.
11. 144° 解析:由题图得,∠1与∠2互为邻补角,即∠1+∠2=180°. 又∵∠1=36°,∴ ∠2=180°36°=144°. 12. 50 解析:∵∠BAC=80°,∴∠EAC=100°.
∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°. ∵AD∥BC,∴∠B=∠EAD=50°. 故答案为50.
13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短
解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴ 沿AB开渠,能使所开的渠道最短.
14. ∠1+∠2=90° 解析:∵ 直线AB、EF相交于O点,∴ ∠1=∠DOF. 又∵ AB⊥CD,∴ ∠2+∠DOF=90°,∴ ∠1+∠2=90°. 15. 65° 解析:∵∠1=155°,∴∠EDC=180°-155°=25°. ∵DE∥BC,∴∠C=∠EDC=25°.
∵在△ABC中,∠A=90°,∠C=25°, ∴∠B=180°-90°-25°=65°. 故答案为65°.
16. 54° 解析:∵ AB∥CD,
∴ ∠BEF=180°∠1=180°72°=108°,∠2=∠BEG. 又∵ EG平分∠BEF,∴ ∠BEG=∠BEF=×108°=54°, 故∠2=∠BEG=54°.
17. 78° 解析:延长BC与直线a相交于点D,
∵ a∥b,∴ ∠ADC=∠DBE=50°. ∴ ∠ACB=∠ADC +28°=50°+28°=78°. 故应填78°.
18. 120 解析:∵AB∥CD,∴∠1=∠3, 而∠1=60°,∴∠3=60°.
又∵∠2+∠3=180°,∴∠2=180°-60°=120°. 故答案为120. 19.解:(1)(2)如图所示.
第19题答图 (3)∠PQC=60°.
理由:∵ PQ∥CD,∴ ∠DCB+∠PQC=180°. ∵ ∠DCB=120°,∴ ∠PQC=180°120°=60°. 20. 解:(1)小鱼的面积为7×6 ×5×6 ×2×5 ×4×2 ×1.5×1 ×11=16.
(2)将每个关键点向左平移3个单位,连接即可.
第6页,共8页
×