内容发布更新时间 : 2025/1/8 5:57:03星期一 下面是文章的全部内容请认真阅读。
1.3 解直角三角形(第3课时)
1.仰角,俯角的定义:如图,在视线与水平线所成的角中,视线在水平线上方的叫做________,视线在水平线下方的叫做________.
2.方位角.
3.在实际测量高度、宽度、距离等问题中,常结合视角知识构造直角三角形,利用三角函数或相似三角形的知识来解决问题.常见的构造的基本图形有如下几种:
(1)如图1,不同地点看同一点;(2)如图2,同一地点看不同点.
A组 基础训练
1.如图,某飞机在空中A点处测得飞行高度h=1000m,从飞机上看到地面指挥站B的俯角α=30°,则地面指挥站与飞机的水平距离BC为( )
A.500m B.2000m C.1000m D.10003m
第1题图
2.如图,王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地( )
第2题图
A.503m B.100m C.150m D.1003m
3.(衢州中考)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档
5
的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是( )
2
A.144cm B.180cm C.240cm D.360cm
4.(苏州中考)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )
第4题图
A.4km B.23km C.22km D.(3+1)km
1.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),由此可知,B,C两地相距________m.
第5题图
6.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD=______米(结果可保留根号).
第6题图
7.(菏泽中考)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+3)海里的C处,为了防止某国海巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.
第7题图
8.(绍兴、义乌中考)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数;
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
第8题图
B组 自主提高
9.(益阳中考)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)( )
第9题图
A.
hhh B. C. D.h·cosα sinαcosαtanα
10.如图所示,两条宽度都为2cm的纸条交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为________.