《微积分(二)》同步练习册(最终使用版) 下载本文

内容发布更新时间 : 2024/11/20 0:27:40星期一 下面是文章的全部内容请认真阅读。

实用标准文档

第五章 不定积分 §5.3 凑微分法和分部积分法

(第5.1~5.2节的内容,请参见本练习册末尾、第五章“自测题”前的附加材料)

(9)

?x3dx; (10)?sinxcosxdx;

1. 求下列不定积分:

(1) ?e?2xdx; (2)

(3)?dxx2?x; (4) (5)

?x?11?2x?x2dx; (6)?12?11?2x?x2d(1?2x?x2)

(7)?sin2xcos3xdx; (8) 文案大全

?1xlnxdx;

?x1?x2dx;

?sin2?1?2x?dx;

?1sin4xdx; ???csc2xdctgx???(ctg2x?1)dctgx??13ctg3x?ctgx?c1?x22?3cos2x?x3x211?x2dx??1?x2xdx?2?(1?x2?11?x2)d(1?x2) ?sinxcosx12?3cos2xdx??2?12?3cos2xdcos2x?16?12?3cos2xd(2?3cos2x) ?132?3cos2x?c(11)?1dx; (12*)?1xsinxcosx1?exdx;

(13*

)?xx?1?lnx?dx; (14*

)

?dx?sinx?2cosx?2.

??exlnx?1?lnx?dx12dxd(tgx???exlnxdxlnx

???cosxtgx?2?2??2)?tgx?2?2?exlnx?c??1tgx?2?c

实用标准文档

3. 求下列不定积分: (1)??arcsinx?ln(x?1)?dx; (2)?x2e?2xdx;

(3)?exsin2xdx; (4) ?x?1?x2?ex2dx;

(5) ?sinlnxdx; (6)

?1?x2dx.

?1?x2dx??sectdtgt?secttgt??tgtdsect?secttgt??tg2tsectdt?secttgt??sectdtgt??sectdt?sectdtgt?12[secttgt?lnsect?tgt]?c?12[x1?x2?ln1?x2?x]?c

4. 求下列有理函数的不定积分:

(1) ?1x(1?x7)dx; (2)?x1?x?x2dx. 文案大全

(x?1)?1??1?2231dx27?17x7(1?x7)dx4?(2?x)?17?(11131x7?x7?1)dx7 ?2ln[4?(2?x)2]

?1x73237ln1?x7?c?3arctg3?c5. 求下列不定积分: (1) 已知f(x)是e?x2的一个原函数,求?xf?(x)dx;

f?(x)?e?x2,?xf?(x)dx??xe?x2dx??1?x22?ed?x2??12e?x2?c

(2) 已知e?x2是f(x)的一个原函数,求?xf?(x)dx.

?xf?(x)dx??xdf(x)?xf(x)??f(x)dx?x(e?x2)??e?x2?c

??2x2e?x2?e?x2?c

实用标准文档

§5.4 换元积分法

1. 求下列不定积分: (1)?1?xdx; (2)?11?2x?3dx;

(3)

?1?x2x3dx; (4)?1x1?x2dx; 法1)x?1t原式??t311x?sint1?t2(?t2dt)原式??1???1?t2dtsintcostcostdt?法2)x?tgt?csctdt??lncsct?ctgt?c原式??sect?ln1tg3tsec2tdtx?1?x2?x?c??csc3tdt???csctdctgt (5)?xcosxdx;

文案大全

(6)?e?xdx; (7)?x98?dx

1?x2?101298?x?dx?1??sin98t101cos101tcostdt??tg98tdtgt x2?2

(7) ?ln(1?1?xx)dx. t?1?xx,x?1t2?1原式??ln(1?t)d1ln(1?t)1t2?1?t2?1??(t?1)(t?1)2dt11?1?1(t?1)(t?1)2?4t?1?4t?1?2(t?1)2 111?14??(t?1)(t?1)2dt??(t?1?4t?1?2(t?1)2)dt法2)原式??ln(1?t)d1t2?1?12[?ln(1?t)d1t?1??ln(1?t)d1t?1]