ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/12/27 9:16:07ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ¸´Ï°
µÚÒ»Õ ¸ÅÂÊÂ۵Ļù±¾¸ÅÄî
Ò».»ù±¾¸ÅÄî
Ëæ»úÊÔÑéE:(1)¿ÉÒÔÔÚÏàͬµÄÌõ¼þÏÂÖØ¸´µØ½øÐÐ;(2)ÿ´ÎÊÔÑéµÄ¿ÉÄܽá¹û²»Ö¹Ò»¸ö,²¢ÇÒÄÜÊÂÏÈÃ÷È·ÊÔÑéµÄËùÓпÉÄܽá¹û;(3)½øÐÐÒ»´ÎÊÔÑé֮ǰ²»ÄÜÈ·¶¨ÄÄÒ»¸ö½á¹û»á³öÏÖ. Ñù±¾¿Õ¼äS: EµÄËùÓпÉÄܽá¹û×é³ÉµÄ¼¯ºÏ. Ñù±¾µã(»ù±¾Ê¼þ):EµÄÿ¸ö½á¹û. Ëæ»úʼþ(ʼþ):Ñù±¾¿Õ¼äSµÄ×Ó¼¯.
±ØÈ»Ê¼þ(S):ÿ´ÎÊÔÑéÖÐÒ»¶¨·¢ÉúµÄʼþ. ²»¿ÉÄÜʼþ(?):ÿ´ÎÊÔÑéÖÐÒ»¶¨²»»á·¢ÉúµÄʼþ. ¶þ. ʼþ¼äµÄ¹ØÏµºÍÔËËã
1.A?B(ʼþB°üº¬Ê¼þA )ʼþA·¢Éú±ØÈ»µ¼ÖÂʼþB·¢Éú. 2.A¡ÈB(ºÍʼþ)ʼþAÓëBÖÁÉÙÓÐÒ»¸ö·¢Éú. 3. A¡ÉB=AB(»ýʼþ)ʼþAÓëBͬʱ·¢Éú. 4. A-B(²îʼþ)ʼþA·¢Éú¶øB²»·¢Éú.
5. AB=? (AÓëB»¥²»ÏàÈÝ»ò»¥³â)ʼþAÓëB²»ÄÜͬʱ·¢Éú.
6. AB=?ÇÒA¡ÈB=S (AÓëB»¥ÎªÄæÊ¼þ»ò¶ÔÁ¢Ê¼þ)±íʾһ´ÎÊÔÑéÖÐAÓëB±ØÓÐÒ»¸öÇÒ½öÓÐÒ»¸ö·¢Éú. B=A, A=B .
ÔËËã¹æÔò ½»»»ÂÉ ½áºÏÂÉ ·ÖÅäÂÉ µÂ?Ħ¸ùÂÉ A?B?A?B A?B?A?B Èý. ¸ÅÂʵ͍ÒåÓëÐÔÖÊ
1.¶¨Òå ¶ÔÓÚEµÄÿһʼþA¸³ÓèÒ»¸öʵÊý,¼ÇΪP(A),³ÆÎªÊ¼þAµÄ¸ÅÂÊ. (1)·Ç¸ºÐÔ P(A)¡Ý0 ; (2)¹éÒ»ÐÔ»ò¹æ·¶ÐÔ P(S)=1 ;
(3)¿ÉÁпɼÓÐÔ ¶ÔÓÚÁ½Á½»¥²»ÏàÈݵÄʼþA1,A2,¡(A iAj=¦Õ, i¡Ùj, i,j=1,2,¡),
P(A1¡ÈA2¡È¡)=P( A1)+P(A2)+¡ 2.ÐÔÖÊ
(1) P(?) = 0 , ×¢Òâ: AΪ²»¿ÉÄÜʼþ P(A)=0 .
(2)ÓÐÏ޿ɼÓÐÔ ¶ÔÓÚn¸öÁ½Á½»¥²»ÏàÈݵÄʼþA1,A2,¡,A n ,
P(A1¡ÈA2¡È¡¡ÈA n)=P(A1)+P(A2)+¡+P(A n) (ÓÐÏ޿ɼÓÐÔÓë¿ÉÁпɼÓÐԺϳƼӷ¨¶¨Àí) (3)ÈôA?B, ÔòP(A)¡ÜP(B), P(B-A)=P(B)-P(A) . (4)¶ÔÓÚÈÎһʼþA, P(A)¡Ü1, P(A)=1-P(A) .
(5)¹ãÒå¼Ó·¨¶¨Àí ¶ÔÓÚÈÎÒâ¶þʼþA,B ,P(A¡ÈB)=P(A)+P(B)-P(AB) . ¶ÔÓÚÈÎÒân¸öʼþA1,A2,¡,A n
P?A1?A2???An???P?Ai??i?1n1?i?j?n?PAiAj???1?i?j?k?n?PAiAjAk?
??¡+(-1)n-1P(A1A2¡A n)
ËÄ.µÈ¿ÉÄÜ(¹Åµä)¸ÅÐÍ
1.¶¨Òå Èç¹ûÊÔÑéEÂú×ã:(1)Ñù±¾¿Õ¼äµÄÔªËØÖ»ÓÐÓÐÏÞ¸ö,¼´S={e1,e2,¡,e n};(2)ÿһ¸ö»ù±¾Ê¼þµÄ¸ÅÂÊÏàµÈ,¼´P(e1)=P(e2)=¡= P(e n ).Ôò³ÆÊÔÑéEËù¶ÔÓ¦µÄ¸ÅÂÊÄ£ÐÍΪµÈ¿ÉÄÜ(¹Åµä)¸ÅÐÍ. 2.¼ÆË㹫ʽ P(A)=k / n ÆäÖÐkÊÇAÖаüº¬µÄ»ù±¾Ê¼þÊý, nÊÇSÖаüº¬µÄ»ù±¾Ê¼þ×ÜÊý. Îå.Ìõ¼þ¸ÅÂÊ
1.¶¨Òå ʼþA·¢ÉúµÄÌõ¼þÏÂʼþB·¢ÉúµÄÌõ¼þ¸ÅÂÊP(B|A)=P(AB) / P(A) ( P(A)>0). 2.³Ë·¨¶¨Àí P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).
P(A1A2¡A n)=P(A1)P(A2|A1)P(A3|A1A2)¡P(A n|A1A2¡A n-1) (n¡Ý2, P(A1A2¡A n-1) > 0) 3. B1,B2,¡,B nÊÇÑù±¾¿Õ¼äSµÄÒ»¸ö»®·Ö(BiBj=¦Õ,i¡Ùj,i,j=1,2,¡,n, B1¡ÈB2¡È¡¡ÈB n=S) ,Ôò µ±P(B i)>0ʱ,ÓÐÈ«¸ÅÂʹ«Ê½ P(A)=?P?Bi?PABi
i?1n??P?Bi?P?ABi?P?ABi??nµ±P(A)>0, P(B i)>0ʱ,Óб´Ò¶Ë¹¹«Ê½P (Bi|A)= .
P?A??P?Bi?P?ABi?i?1Áù.ʼþµÄ¶ÀÁ¢ÐÔ
1.Á½¸öʼþA,B,Âú×ãP(AB) = P(A) P(B)ʱ,³ÆA,BΪÏ໥¶ÀÁ¢µÄʼþ. (1)Á½¸öʼþA,BÏ໥¶ÀÁ¢? P(B)= P (B|A) .
(2)ÈôAÓëB,AÓëB,AÓëB, ,AÓëBÖÐÓÐÒ»¶ÔÏ໥¶ÀÁ¢,ÔòÁíÍâÈý¶ÔÒ²Ï໥¶ÀÁ¢. 2.Èý¸öʼþA,B,CÂú×ãP(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),³ÆA,B,CÈýʼþÁ½Á½Ï໥¶ÀÁ¢. ÈôÔÙÂú×ãP(ABC) =P(A) P(B) P(C),Ôò³ÆA,B,CÈýʼþÏ໥¶ÀÁ¢. 3.n¸öʼþA1,A2,¡,A n,Èç¹û¶ÔÈÎÒâk (1 PAiAi?Ai?PAiPAi?PAi,Ôò³ÆÕân¸öʼþA1,A2,¡,A nÏ໥¶ÀÁ¢. 12k12k????????µÚ¶þÕÂ Ëæ»ú±äÁ¿¼°Æä¸ÅÂÊ·Ö²¼ Ò».Ëæ»ú±äÁ¿¼°Æä·Ö²¼º¯Êý 1.ÔÚËæ»úÊÔÑéEµÄÑù±¾¿Õ¼äS={e}É϶¨ÒåµÄµ¥ÖµÊµÖµº¯ÊýX=X (e)³ÆÎªËæ»ú±äÁ¿. 2.Ëæ»ú±äÁ¿XµÄ·Ö²¼º¯ÊýF(x)=P{X¡Üx} , xÊÇÈÎÒâʵÊý. ÆäÐÔÖÊΪ: (1)0¡ÜF(x)¡Ü1 ,F(-¡Þ)=0,F(¡Þ)=1. (2)F(x)µ¥µ÷²»¼õ,¼´Èôx1 1.ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÂÉ P{X= x k}= p k (k=1,2,¡) Ò²¿ÉÒÔÁбí±íʾ. ÆäÐÔÖÊΪ: (1)·Ç¸ºÐÔ 0¡ÜPk¡Ü1 ; (2)¹éÒ»ÐÔ ?pk?1 . k?1?2.ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼º¯Êý F(x)=?PkΪ½×Ìݺ¯Êý,ËüÔÚx=x k (k=1,2,¡)´¦¾ßÓÐÌøÔ¾µã, Xk?xÆäÌøÔ¾ÖµÎªp k=P{X=x k} . 3.ÈýÖÖÖØÒªµÄÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ (1)X~(0-1)·Ö²¼ P{X=1}= p ,P{X=0}=1¨Cp (0 ?n?kn?k???(2)X~b(n,p)²ÎÊýΪn,pµÄ¶þÏî·Ö²¼P{X=k}=?(k=0,1,2,¡,n) (0 0) k!Èý.Á¬ÐøÐÍËæ»ú±äÁ¿ 1.¶¨Òå Èç¹ûËæ»ú±äÁ¿XµÄ·Ö²¼º¯ÊýF(x)¿ÉÒÔ±íʾ³Éijһ·Ç¸ºº¯Êýf(x)µÄ»ý·ÖF(x)=???f?t?dt,-¡Þ< x <¡Þ,Ôò³ÆXΪÁ¬ÐøÐÍËæ»ú±äÁ¿,ÆäÖÐf (x)³ÆÎªXµÄ¸ÅÂÊÃܶÈ(º¯Êý). x