内容发布更新时间 : 2024/12/30 2:34:21星期一 下面是文章的全部内容请认真阅读。
定积分常见问题
一、关于含“变上限积分”的问题
例1、求下列导数
x3(1)F(x)??dt
x21?t4x3(2)F(x)??sinxdt
x21?t4x(3)F(x)??tf(x2?t2)dt
0例2、求下列极限
x2(1)求lim1x??x2?(1?t)et?x2dt 0(2)求lim?x0tf(x2?t2)dtx?0x4,f(x)连续,f(0)?0,f?(0)?2 例3
1(1)求连续函数f(x),使之满足?f(tx)dt?f(x)?xsinx0x(2)、设f(x)??lntdt,其中x?0,求f(x)?f(1)11?tx 3)设f(x)在x?0可微。其反函数为g(x),且f(x)?g(t)dt?13?x32?81?,求f(x)
二、定积分计算的有关问题
例1、(常见形式积分)?44(1)?dx (2)?x01?cos2xdx 1x(1?x)2ax2?a2ln2(4)?ax4dx(a?0) (5)?1?e?2xdx 0
1
12(3).?arcsinx1x(1?x)dx4a(6)?dx0x?a2?x2
(
例2、(分段函数,绝对值函数)
l?kx,0?x?xb??2,求?(x)??f(t)dt [(1)?xdx(a?b) (2)、设f(x)??l0a?c,?x?l??21(3)?tt?xdt
0x(4).?0??sinx,0?x???2f(t)g(x?t)dt,(x?0)其中当x?0时,f(x)?x,而g(x)??
??0,x???2例3(对称区间上积分)
1(1)?(1?sinx)(ex?e?x)dx
?1?(2)??xsinxlnx?1?x??b121?2?2?2sinx?ln(1?x)?dx (3)?dx ?x???1?e24?4例4、[形如?af(x)dx的积分]
f(x)?g(x)??24(1)?2esinxdx (2)?sinxcosxdxe?eln(9?x)?ln(x?3)0ln(9?x) (3)dx ,??1?(tgx)02
例5、(由三角有理式与其他初等函数通过四则成复合而成的函数的积分)
常用结论??1.??020f(sinx)dx??20f(cosx)dx),f(sinx)dx31???,n为正偶自然数422,42?,n为大于1的正奇数53,
2.?xf(sinx)dx????2??0?n?1n?3???nn?2nn3.?2sinxdx??2cosxdx??00?n?1?n?3?nn?2?
2
?f(sinx)(1)?dx
f(sinx)?f(cosx)0?22???20(sinx)(sinx)333?(cosx)dx
2sin10x?cos10x(2)、dx (3)?lnsinxdx ?4?sinx?cosx00?xsin2nxxsin3x?(5)计算I?dx,n?N (4)?dxn2n2n?20sinx?cosx1?cosx0?(6)?xsin6xcos4xdx0?
?x(7)设f(x)在???,??上连续,且满足f(x)??f(x)sinxdx,求f(x)
1?cos2x???(8)求?(x?1)?1121001dx (9)?)n?01?sin2xdx
(10)F(x)??
x?2?xesintsintdt,则F(x)是(
A.正常数B负常数C恒为零D不是常数例6 利用适当变量代换计算积分
?4(1)?ln(1?tgx)dx (2)0ln(1?x)dx 2?1?x0??01(3)?xsin20xdx (4)求?0n?dx(1?x2)(1?x?)
例7(其它)
?(1)、设f(x)在[0,]上连续,且f(x)?xcosx??f(t)dt,求f(x)
20221?22(2)设f(x)?x?x?f(x)dx?2?f(x)dx,求f(x)
00(3)设y?y(x)满足y?(x)?arcsin(x?1)2,(0?x?1),求?y(x)dx
011(4)、设f(x)连续,且满足?tf(2x?t)dt?arctanx2,f(1)?1,求?f(x)dx的值201?2cosxsinxcosx(5)已知:dx?A,求dx, 2??(x?2)x?100x2?3