ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/7/26 7:31:11ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
¡¾Ô´´¡¿¸½´úÂëÊý¾Ý
ÓÐÎÊÌâµ½ÌÔ±¦ÕÒ¡°´óÊý¾Ý²¿Â䡱¾Í¿ÉÒÔÁË
#°²×°
# install.packages(\ library(\)
library(RODBC) library(DBI)
library(ggplot2) library(RMySQL)
drv <-dbDriver( \ ) l10n_info() ## $MBCS ## [1] TRUE ##
## $`UTF-8` ## [1] FALSE ##
## $`Latin-1` ## [1] FALSE ##
## $codepage ## [1] 936
# Connecting to MySQL:
# Once the RMySQL library is installed create a database connection object.
#ÕâÀïÐÞ¸ÄÓû§ÃûÃÜÂëºÍÊý¾Ý¿âÃû³Æ
con <-dbConnect(RMySQL::MySQL(), dbname =\, user='root', password='63341498')
#################¸Ä±äÎÄ×Ö±àÂëΪGBK·½Ê½,·ñÔòÖÐÎÄ»áÂÒÂë################### dbSendQuery(con, 'SET NAMES gbk') #ÏòÊý¾Ý¿âдÈë»ò¶ÁÈ¡Êý¾Ý֮ǰ¼ÓÉÏ´ËÃüÁî ##
dbListTables(con)
## [1] \ ## [6] \ ## [11] \ ## [16] \
¡¾Ô´´¡¿¸½´úÂëÊý¾Ý
ÓÐÎÊÌâµ½ÌÔ±¦ÕÒ¡°´óÊý¾Ý²¿Â䡱¾Í¿ÉÒÔÁË
# Retrieving data from MySQL:
rs =dbSendQuery(con, \)
#
data =fetch(rs ,-1)
# results of this query remain on the MySQL server, to access the results in R we need to use the fetch function. #head of data
#²é¿´Êý¾Ý #ÔʼÊý¾Ý head(data)
## tid status seller_nick buyer_nick ## 1 1.048498e+15 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê tb40425453 ## 2 1.049300e+15 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê gonow17 ## 3 9.469034e+14 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê maymaydog ## 4 9.475161e+14 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê Ïп´Â仨_77 ## 5 1.049254e+15 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê ÌìÌìÓÆ°é ## 6 9.475204e+14 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê xiaotaoqidaisy ## created modified payment iids ## 1 2015-05-13 23:55:45 2015-05-24 10:34:23 78 41878620642 ## 2 2015-05-13 22:12:35 2015-05-24 10:34:21 78 41878620642 ## 3 2015-05-14 00:11:29 2015-05-24 10:34:16 78 41878620642 ## 4 2015-05-13 21:18:02 2015-05-24 10:34:09 78 41878620642 ## 5 2015-05-13 21:25:08 2015-05-24 10:34:02 78 41878620642 ## 6 2015-05-13 21:18:56 2015-05-24 10:34:02 78 41878620642
## ... #´¦ÀíÊý¾Ý df=data head(df)
## tid status seller_nick buyer_nick ## 1 1.048498e+15 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê tb40425453 ## 2 1.049300e+15 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê gonow17 ## 3 9.469034e+14 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê maymaydog ## 4 9.475161e+14 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê Ïп´Â仨_77 ## 5 1.049254e+15 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê ÌìÌìÓÆ°é ## 6 9.475204e+14 TRADE_FINISHED ʱ¼äº£»¯×±Æ·Æì½¢µê xiaotaoqidaisy ## created modified payment iids ## 1 2015-05-13 23:55:45 2015-05-24 10:34:23 78 41878620642 ## 2 2015-05-13 22:12:35 2015-05-24 10:34:21 78 41878620642
¡¾Ô´´¡¿¸½´úÂëÊý¾Ý
ÓÐÎÊÌâµ½ÌÔ±¦ÕÒ¡°´óÊý¾Ý²¿Â䡱¾Í¿ÉÒÔÁË
## 3 2015-05-14 00:11:29 2015-05-24 10:34:16 78 41878620642 ## 4 2015-05-13 21:18:02 2015-05-24 10:34:09 78 41878620642 ## 5 2015-05-13 21:25:08 2015-05-24 10:34:02 78 41878620642 ## 6 2015-05-13 21:18:56 2015-05-24 10:34:02 78 41878620642
## dim(df) ## [1] 67938 9
df=df[,c(\,\,\,\)]
colnames(df)=c(\ , \ , \,\)
# aggregate(df,by= list(\ df2=aggregate(Amount~ID,data=df,FUN=sum) head(df2)
## ID Amount ## 1 _duoduo_ 1668.00 ## 2 _summer_bye 39.32 ## 3 _talent 600.00 ## 4 _µÎË®´©Ê¯_ 11.30 ## 5 _»¨ÊÂÁËÁËÁËÁË 91.00 ## 6 _ÁÁ×Ó_ 75.98 df3=merge(df,df2,by =\)
head(df3)
## ID Date Amount.x SellerID Amount.y
## 1 _duoduo_ 2016-04-05 14:02:47 339.00 gafuhome¼Ò¾ÓÆì½¢µê 1668.00
## 2 _duoduo_ 2016-04-06 09:34:04 18.00 gafuhome¼Ò¾ÓÆì½¢µê 1668.00
## 3 _duoduo_ 2016-04-05 14:17:55 855.00 gafuhome¼Ò¾ÓÆì½¢µê 1668.00
## 4 _duoduo_ 2016-04-05 14:24:47 456.00 gafuhome¼Ò¾ÓÆì½¢µê 1668.00
## 5 _summer_bye 2015-05-17 18:33:54 39.32 ¼ÓÓÍ´ô×Ó 39.32
## 6 _talent 2016-04-10 02:23:40 100.00 ¶íËÙͨ¹ú¼ÊÎïÁ÷ 600.00