󷳿·ÖÀà.doc ÏÂÔØ±¾ÎÄ

ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2026/1/7 13:10:31ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£

ºÓ ±± ´ó ѧ ¹¤ ÉÌ Ñ§ Ôº

2.82.62.42.221.81.61.41.11.151.21.251.31.351.41.451.51.551.6Ñù±¾É¢µãºÍ·Ö½çÏßͼ1

´ÓÃüÁî´°¿ÚµÃµ½ÔËÐнá¹û a =

6.6455 -2.9128 -3.3851 ËùÒÔÖ±Ïß·½³Ì

a1x?a2y?a3?0

ÖеÄÈý¸ö´ý¶¨ÏµÊý·Ö±ðΪ

a1 = 6.6455 a2 = -2.9128 a3 = -3.3857

ËùÒÔÅбðÖ±Ïß·½³ÌΪ

6.6455 x -2.9128 y-3.3857 = 0

µÚ5Ò³

ºÓ ±± ´ó ѧ ¹¤ ÉÌ Ñ§ Ôº

Åбðº¯ÊýΪ

g(P) = 6.6455x-2.9128 y-3.3857

±àд³ÌÐòyanzheng.m,½«15¸öѧϰÑù±¾µÄËùÓÐÊý¾ÝÒÀ´Î´úÈëÅбðº¯Êýg(P)

x=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56 1.14 1.18 1.20 1.26 1.28 1.30];

y=[1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08 1.78 1.96 1.86 2.00 2.00 1.96];

g= 6.6455*x - 2.9128*y-3.3857

ÔËÐгÌÐò¿ÉµÃ

g =

1.1555 0.5839 1.0081 0.4838 0.2508 0.9662 1.1483 1.5471 0.9227 -0.9946 -1.2531 -0.8289 -0.8380 -0.7051 -0.4556

ÒòΪǰ9¸ög(P)µÄֵΪÕýÊý£¬ºó6¸ög(P)µÄֵΪ¸ºÊý¡£¸ù¾ÝÅбðº¯Êýg(P)¶¨ÒåÖª£¬Ç°9¸öѧϰÑù±¾ÎªAfÀ࣬ºó6¸öѧϰÑù±¾ÎªApfÀà¡£ÕâÓëѧϰÑù±¾±¾ÉíÊÇÒ»Öµġ£

4.2¶ÔÌâÄ¿ÌṩµÄÈý¸öÑù±¾¼ÓÒÔʶ±ð

ÌâÄ¿ÌṩÁËÈý¸öÑù±¾¹©Åбð£¬ËüÃǵÄÊý¾ÝÁбíÈçÏÂ

±àºÅ ´¥½Ç³¤¶Èx ³á°ò³¤¶Èy

±àд³ÌÐòpanduan.m£¬½«ÕâÈý×éÊý¾Ý´úÈëÅбðº¯Êý

x=[1.24 1.28 1.40]; y=[1.80 1.84 2.04];

g= 6.6455*x - 2.9128*y-3.3857

1 1.24 1.80 2 1.28 1.84 3 1.40 2.04 ÔËÐгÌÐò¿ÉµÃ

g =

-0.3883 -0.2390 -0.0241

ËùÒÔ£¬ÓÉÅбðº¯ÊýÅбðÈý¸öÐÂ󷳿µÄÀàÊô£¬¾ùÅÐΪ Apf Àà¡£

µÚ6Ò³

ºÓ ±± ´ó ѧ ¹¤ ÉÌ Ñ§ Ôº

4.3Èô AfÊDZ¦¹óµÄ´«·ÛÒæ³æ,ApfÊÇijÖÖ¼²²¡µÄÔØÌå,Ð޸ĵķÖÀà·½·¨

ÉÏÊöµÄ½â¾öÎÊÌâ·½°¸ÔÚ½âÌâ¹ý³ÌÖзֱðʹÓÃȨֵ ¡°1¡± ºÍ¡°-1¡±´ú±íÕýÊýºÍ¸ºÊýÀ´Íê³ÉµÄ¡£ÕâÖ»ÊÇÒ»ÖÖÈËΪµÄ¹æ¶¨£¬²¢²»ÊÇÒ»³É²»±äµÄ¡£Èç¹ûAfÊDZ¦¹óµÄ´«·ÛÒæ³æ,ApfÊÇijÖÖ¼²²¡µÄÔØÌ壬¿ÉÒÔ½«³¬¶¨·½³Ì×éµÄÓÒ¶ËÏîÖеÄȨֵ¡°-1¡±¸ÄΪÆäËüµÄ¸ºÊý£¬ÖÁÓÚ¾ßÌåµÄÐÞ¸ÄÊýÖµ²»½öÓëÔ­À´µÄ15¸öÑù±¾Óйأ¬»¹Óë±£»¤´«·ÛÒæ³æAfÖØÒª£¬»¹ÊÇÏûÃð´«²¡º¦³æApfÖØÒªÓйء£ÐÞ¸ÄÊýÖµºó£¬ÖØÐÂÇ󳬶¨·½³Ì×éµÄ½â»ñµÃ·ÖÀà±ß½çÖ±Ïߵķ½³Ì¡£ÕâÑù½«ÓëÇ°ÃæËùÇó·ÖÀà±ß½çÖ±Ïߵķ½³Ì²»Ò»Ñù£¬µ±È»¶Ôиø¶¨µÄ󷳿µÄ³á°òºÍ´¥½Ç³¤¶ÈÊý¾ÝÀ´×öÅÐ¶ÏÆä½á¹ûÒ²ÊDz»Í¬µÄ¡£

ÀýÈçÕâÀïÒÔ×î´ó³Ì¶ÈµÄÏûÃð´«²¡º¦³æApfΪÖ÷£¬½«È¨Öµ¡°-1¡±¸ÄΪ¡°-2¡±£¬Ð޸IJ¿·ÖÊý¾Ý£¬µÃµ½mengchong1.m

xy=[1.24 1.27;1.36 1.74;1.38 1.64;1.38 1.82;1.38 1.90; 1.40 1.70;1.48 1.82;1.54 1.82;1.56 2.08;1.14 1.78; 1.18 1.96;1.20 1.86;1.26 2.00;1.28 2.00;1.30 1.96]; %Ñù±¾Êý¾Ý z=[1;1;1;1;1;1;1;1;1;-2;-2;-2;-2;-2;-2]; %Êý¾Ý¸ü¸Ä

x=xy(:,1);y=xy(:,2);x1=x(1:9);y1=y(1:9);x2=x(10:15);y2=y(10:15); A=[1.24 1.27 1; 1.36 1.74 1; 1.38 1.64 1; 1.38 1.82 1; 1.38 1.90 1; 1.40 1.70 1; 1.48 1.82 1; 1.54 1.82 1; 1.56 2.08 1; 1.14 1.78 1; 1.18 1.96 1; 1.20 1.86 1; 1.26 2.00 1; 1.28 2.00 1; 1.30 1.96 1];

a = A \\ z %Çó½â³¬¶¨·½³Ì×é x=1.10:0.02:1.60;

y=(-a(1)*x-a(3) )/a(2); %È·¶¨·Ö½çÏß·½³Ì plot(x1,y1,'x',x2,y2,'*',x,y) %ÔÚÉ¢µãͼÖл­³ö·Ö½çÏß

³ÌÐòÖ´Ðк󣬴ÓͼÐδ°¿Ú½«µÃµ½ÐµķֽçÏßͼ£¨ÈçÏÂͼËùʾ£©

µÚ7Ò³

ºÓ ±± ´ó ѧ ¹¤ ÉÌ Ñ§ Ôº

2.62.42.221.81.61.41.11.151.21.251.31.351.41.451.51.551.6Ñù±¾É¢µãºÍ·Ö½çÏßͼ 2

´ÓͼÐÎÖпÉÒÔ¿´³ö£¬ÔÚËù¸ø³öµÄÑù±¾ÖУ¬ÓÐÒ»Ö»AfÀà󷳿±»·Öµ½ÁËApfÀàÒ»²à£¬ÕâÀï¿ÉÒÔ°ÑËü×÷ÎªÌØÀý¿´´ý£¬´Ó×ÜÌåÉÏ¿´£¬ÕâÖÖ·ÖÀ෽ʽÒÀÈ»ÊÇ¿ÆÑ§µÄ£¬ÒòΪÕâÖÖ·ÖÀ෽ʽÄܸüºÃµÄÇ÷Àû±Üº¦¡£ ͬÑù´ÓÃüÁî´°¿ÚµÃµ½ÔËÐнá¹û£¬

a =

9.9683 -4.3692 -5.5776

±àд³ÌÐòpanduan1.m£¬½«ÐèÒªÅжϵÄÈý×éÊý¾Ý´úÈëеÄÅбðº¯Êýg(P) = 9.9683x-4.3692 y-5.5776

x=[1.24 1.28 1.40]; y=[1.80 1.84 2.04];

g= 9.9683*x - 4.3692*y-5.5776

ÔËÐгÌÐò¿ÉµÃ g =

-1.0815 -0.8575 -0.5351

µÚ8Ò³

ºÓ ±± ´ó ѧ ¹¤ ÉÌ Ñ§ Ôº

ËùÒÔ£¬Èç¹ûAfÊDZ¦¹óµÄ´«·ÛÒæ³æ£¬ApfÊÇijÖÖ¼²²¡µÄÔØÌ壬ÔòÓÉеÄÅбðº¯ÊýÅбðÈý¸öÐÂ󷳿µÄÀàÊô£¬ÒÀÈ»¾ùÅÐΪApfÀࣨע£º¸Ã½áÂÛ³ÉÁ¢µÄǰÌáÊǰÑȨֵ¡°-1¡±¸ÄΪ¡°-2¡±£¬Èç¹û¸ÄΪÆäËü¸ºÖµ£¬½á¹û¿ÉÄÜÓÐËù²»Í¬£©¡£

4.4½â¾ö󷳿·ÖÀàÎÊÌâµÄÆäËû·½°¸¼òÊö

¶ÔÓÚ󷳿·ÖÀàÎÊÌ⣬ÁíÓжàÖÖ½â¾ö·½°¸£¬±ÈÈçÂíÊϾàÀëÅб𷨡¢ FisherÅб𷨡¢BayesÅб𷨣¬ÁíÍâÒ²¿ÉÒÔÔËÓÃÈ˹¤ÖÇÄÜÍø½øÐÐÇó½â£¬½â·¨¿Éν¶àÖÖ¶àÑù¡£

ÕâÀï½éÉÜÈ˹¤ÖÇÄÜÍøÖеÄLVQ£¨Learning Vector Quantization£©ÍøÒÔ¼°BayesÅб𷨣¬²¢Ê¹ÓÃÕâÁ½ÖÖ·½·¨½â¾ö󷳿·ÖÀàÎÊÌ⣨ÕâÀï²»¿¼ÂÇÁ½Ààó·³æÒæ³æ»òº¦³æµÄÇé¿ö£©¡£

4.41È˹¤ÖÇÄÜÍø LVQ

LVQÍøÊÇÒ»ÖÖÊÊÓÃÓÚÓмලÇé¿öµÄѧϰ·½·¨¡£ÔÚÓмලµÄÇé¿öÏ£¬Ñ§Ï°Ñù±¾µÄÀà±ðÊÇÊÂÏÈÒÑÖªµÄ£¬Óë´ËÏàÓ¦£¬Ã¿¸öÊä³öµ¥ÔªËù¶ÔÓ¦µÄÀà±ðÒ²ÊÂÏÈ×÷Á˹涨£¬µ«ÊÇ£¬´ú±íͬһÀà±ðµÄÊä³öµ¥Ôª¿ÉÒÔ²»Ö¹Ò»¸ö¡£ÔÚ LVQ ÖУ¬¶ÔÓÚÈÎÒ»ÊäÈëÏòÁ¿£¬°´Î޼ලÓоºÕùµÄ·½Ê½Ñ¡³öÓÅʤÕßi*£¬µ«È¨µÄÐÞÕý¹æÔòÈ¡¾öÓÚÊäÈëÏòÁ¿µÄÀà±ðÓëi*Ëù´ú±íµÄÊÇ·ñÒ»Ö£¬È·ÇеØËµ£¬Áî

Vwi*j???(Isj?w*)ijij??(Isj?w*)

ǰһÖÖÇé¿ö£¬ÐÞÕýºÍÎ޼ලµÄѧϰһÖ£¬È¨ÏòÑùÆ··½ÏòÒÆ¶¯Ò»Ð¡¶Î¾àÀ룻ºó Ò»ÖÖÔòÏà·´£¬È¨ÏòÀ뿪ÑùÆ··½ÏòÒÆ¶¯Ò»Ð¡¶Î¾àÀ룬ÕâÑù¾Í¼õÉÙÁË´íÎó·ÖÀàµÄ»ú»á¡£

¶ÔÓÚÉÏÊöµÄ󷳿·ÖÀàÎÊÌ⣬ÎÒÃDZàд³ÌÐò lvq.mÈçÏ£º

Af=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56;

1.27 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; % AfÀà󷳿µÄÑù±¾Êý¾Ý Apf=[1.14 1.18 1.20 1.26 1.28 1.30;1.78 1.96 1.86 2.00 2.00 1.96]; % ApfÀà󷳿µÄÑù±¾Êý¾Ý

p=[Af,Apf];% pΪlvqÉñ¾­ÍøµÄÊäÈëÏòÁ¿

Tc=[ones(1,9) 2*ones(1,6)];% TcΪ·ÖÀàÖ¸Êý Af 1;Apf 2 T=ind2vec(Tc);% ind2vec½«Tcת»»ÎªlvqÉñ¾­ÍøµÄÊä³öÏòÁ¿ net=newlvq(minmax(p),5,[0.6,0.4]);%н¨lvqÍø %ÒÔÏÂΪlvqÍøµÄѧϰ¹ý³Ì

net.trainParam.show=100; net.trainParam.epochs=1000; net=train(net,p,T);

µÚ9Ò³