内容发布更新时间 : 2024/12/24 3:44:51星期一 下面是文章的全部内容请认真阅读。
果蔬食品的保鲜、可以促进钙的吸收。
20、琼脂除作为一种海藻类膳食纤维,还可作果冻布丁等食品的凝固剂、稳定剂、增稠剂、固定化细胞的载体,也可凉拌直接食用,是优质的低热量食品。
二、选择题
1、根据化学结构和化学性质,碳水化合物是属于一类___B____的化合物。 (A)多羟基酸 (B)多羟基醛或酮 (C)多羟基醚 (D)多羧基醛或酮 2、糖苷的溶解性能与_____B__有很大关系。
(A)苷键 (B)配体 (C)单糖 (D)多糖 3、淀粉溶液冻结时形成两相体系,一相为结晶水,另一相是____C___。 (A)结晶体 (B)无定形体 (C)玻璃态 (D)冰晶态
4、一次摄入大量苦杏仁易引起中毒,是由于苦杏仁苷在体内彻底水解产生____B__,导致中毒。 (A)D-葡萄糖 (B)氢氰酸 (C)苯甲醛 (D)硫氰酸
5 、多糖分子在溶液中的形状是围绕糖基连接键振动的结果,一般呈无序的___A____状。 (A)无规线团 (B)无规树杈 (C)纵横交错铁轨 (D)曲折河流
6、喷雾或冷冻干燥脱水食品中的碳水化合物随着脱水的进行,使糖-水的相互作用转变成____A___的相互作用。 (A)糖-风味剂 (B)糖-呈色剂 (C)糖-胶凝剂 (D)糖-干燥剂 7、环糊精由于内部呈非极性环境,能有效地截留非极性的____D___和其他小分子化合物。 (A)有色成分 (B)无色成分 (C)挥发性成分 (D)风味成分
8、碳水化合物在非酶褐变过程中除了产生深颜色__C_____色素外,还产生了多种挥发性物质。 (A)黑色 (B)褐色 (C)类黑精 (D)类褐精
9、褐变产物除了能使食品产生风味外,它本身可能具有特殊的风味或者增强其他的风味,具有这种双重作用的焦糖化产物是____B___。 (A)乙基麦芽酚褐丁基麦芽酚 (B)麦芽酚和乙基麦芽酚(C)愈创木酚和麦芽酚(D)麦芽糖和乙基麦芽酚
10、糖醇的甜度除了____A___的甜度和蔗糖相近外,其他糖醇的甜度均比蔗糖低。 (A)木糖醇 (B)甘露醇 (C)山梨醇 (D)乳糖醇
11、 甲壳低聚糖是一类由N-乙酰-(D)-氨基葡萄糖或D-氨基葡萄糖通过___B____糖苷键连接起来的低聚合度的水溶性氨基葡聚糖。 (A)α-1,4 (B)β-1,4 (C)α-1,6 (D)β-1,6 12、卡拉胶形成的凝胶是___A____,即加热凝结融化成溶液,溶液放冷时,又形成凝胶。 (A)热可逆的 (B)热不可逆的 (C)热变性的 (D)热不变性的 13、硒化卡拉胶是由____D___与卡拉胶反应制得。
(A)亚硒酸钙 (B)亚硒酸钾 (C)亚硒酸铁 (D)亚硒酸钠 14、褐藻胶是由___C____结合成的大分子线性聚合物,大多是以钠盐形式存在。 (A)醛糖 (B)酮糖 (C)糖醛酸 (D)糖醇
15、儿茶素按其结构,至少包括有A、B、C三个核,其母核是_____B__衍生物。 (A)β-苯基苯并吡喃 (B)α-苯基苯并吡喃; (C)β-苯基苯并咪唑 (D)α-苯基苯并咪唑 16、食品中丙烯酰胺主要来源于___C____加工过程。
(A)高压 (B)低压 (C)高温 (D)低温 17、低聚木糖是由2~7个木糖以____D___糖苷键结合而成。
(A)α(1→6) (B)β(1→6) (C)α(1→4) (D)β(1→4) 18、马铃薯淀粉在水中加热可形成非常黏的___A____溶液。
(A)透明 (B)不透明 (C)半透明 (D)白色 19、淀粉糊化的本质就是淀粉微观结构___C____。
(A)从结晶转变成非结晶(B)从非结晶转变成结晶(C)从有序转变成无序(D)从无序转变成有序 20、 N-糖苷在水中不稳定,通过一系列复杂反应产生有色物质,这些反应是引起___A____的主要原因。 (A)美拉德褐变 (B)焦糖化褐变 (C)抗坏血酸褐变 (D)酚类成分褐变
三、名词解释
1、非酶褐变:非酶褐变反应主要是碳水化合物在热的作用下发生的一系列化学反应,产生了大量的有色成分和无色的成分,或挥发性和非挥发性成分。由于非酶褐变反应的结果使食品产生了褐色,故将这类反应统称为非酶褐变反应。就碳水化合物而言,非酶褐变反应包括美拉德反应、胶糖化褐变、抗坏血酸褐变和酚类成分的褐变。
2、美拉德反应:主要是指还原糖与氨基酸、蛋白质之间的复杂反应,反应过程中形成的醛类、醇类可发生缩和作用产生醛醇类及脱氮聚合物类,最终形成含氮的棕色聚合物或共聚物类黑素,以及一些需宜和非需宜的风味物质。
3、淀粉的糊化:淀粉分子结构上羟基之间通过氢键缔合形成完整的淀粉粒不溶于冷水,能可逆地吸水并略微溶胀。如果给水中淀粉粒加热,则随着温度上升淀粉分子之间的氢键断裂,因而淀粉分子有更多的位点可以和水分子发生氢键缔合。水渗入淀粉粒。使更多和更长的淀粉分子链分离,导致结构的混乱度增大,同时结晶区的数目和大小均减小,继续加热,淀粉发生不可逆溶胀。此时支链淀粉由于水合作用而出现无规卷曲,淀粉分子的有序结构受到破坏,最后完全成为无序状态,双折射和结晶结构也完全消失,淀粉的这个过程称为糊化。
4、淀粉的老化:热的淀粉糊冷却时,通常形成黏弹性的凝胶,凝胶中联结区的形成表明淀粉分子开始结晶,并失去溶解性。通常将淀粉糊冷却或储藏时,淀粉分子通过氢键相互作用产生沉淀或不溶解的现象,称作淀粉的老化。淀粉的老化实质上是一个再结晶的过程。
5、膳食纤维:凡是不能被人体内源酶消化吸收的可食用植物细胞、多糖、木质素以及相关物质的总和。 6、糖原:糖原又称动物淀粉,是肌肉和肝脏组织中的主要储存的碳水化合物,是同聚糖,与支链淀粉的结构相似,含α-D-1,4和α-D-1,6糖苷键。
7、纤维素:纤维素是植物细胞壁的主要结构成分,通常与半纤维素、果胶和木质素结合在一起,是由D-吡喃葡萄糖通过β-D-1,4糖苷键连接构成的线形同聚糖。
四、简答题
1、膳食纤维的安全性。
(1)大量摄入膳食纤维,因肠道细菌对纤维素的酵解作用而产生挥发性脂肪酸、二氧化碳及甲烷等,可引起人体腹胀、胀气等不适反应。
(2)影响人体对蛋白质、脂肪、碳水化合物的吸收,膳食纤维的食物充盈作用引起膳食脂肪和能量摄入量的减少,还可直接吸附或结合脂质,增加其排出;具有凝胶特性的纤维在肠道内形成凝胶,可以分隔、阻留脂质,影响蛋白质、碳水化合物和脂质与消化酶及黏膜的接触,从而影响人体对这些能量物质的生物利用率。
(3)对于一些结构中含有羟基或羰基基团的膳食纤维,可与人体内的一些有益矿物元素,发生交换或形成复合物,最终随粪便一起排出体外,进而影响肠道内矿物元素的生理吸收。 (4)一些研究表明,膳食纤维可束缚一些维生素,对脂溶性维生素有效性产生影响。 2、淀粉糊化及其阶段。
给水中淀粉粒加热,则随着温度上升淀粉分子之间的氢键断裂,淀粉分子有更多的位点可以和水分子发生氢键缔合。水渗入淀粉粒,使更多和更长的淀粉分子链分离,导致结构的混乱度增大,同时结晶区的数目和大小均减小,继续加热,淀粉发生不可逆溶胀。此时支链淀粉由于水合作用而出现无规卷曲,淀粉分子的有序结构受到破坏,最后完全成为无序状态,双折射和结晶结构也完全消失,淀粉的这个过程称为糊化。淀粉糊化分为三个阶段:
第一阶段:水温未达到糊化温度时,水分是由淀粉粒的孔隙进入粒内,与许多无定形部分的极性基相结合,或简单的吸附,此时若取出脱水,淀粉粒仍可以恢复。
第二阶段:加热至糊化温度,这时大量的水渗入到淀粉粒内,黏度发生变化。此阶段水分子进入微晶束结构,淀粉原有的排列取向被破坏,并随着温度的升高,黏度增加。
第三阶段:使膨胀的淀粉粒继续分离支解。当在95℃恒定一段时间后,则黏度急剧下降。淀粉糊冷却时,一些淀粉分子重新缔合形成不可逆凝胶。 3、淀粉老化及影响因素。
热的淀粉糊冷却时,通常形成黏弹性的凝胶,凝胶中联结区的形成表明淀粉分子开始结晶,并失去溶解性。通常将淀粉糊冷却或储藏时,淀粉分子通过氢键相互作用产生沉淀或不溶解的现象,称作淀粉的老化。影响淀粉老化因素包括以下几点。
(1)淀粉的种类。直链淀粉分子呈直链状结构,在溶液中空间障碍小,易于取向,所以容易老化,分子量大的直链淀粉由于取向困难,比分子量小的老化慢;而支链淀粉分子呈树枝状结构,不易老化。 (2)淀粉的浓度。溶液浓度大,分子碰撞机会多,易于老化,但水分在10%以下时,淀粉难以老化,水分含量在30%~60%,尤其是在40%左右,淀粉最易老化。
(3)无机盐的种类。无机盐离子有阻碍淀粉分子定向取向的作用。
(4)食品的pH值。pH值在5~7时,老化速度最快。而在偏酸或偏碱性时,因带有同种电荷,老化减缓。
(5)温度的高低。淀粉老化的最适温度是2~4℃,60℃以上或-20℃以下就不易老化。
(6)冷冻的速度。糊化的淀粉缓慢冷却时会加重老化,而速冻使淀粉分子间的水分迅速结晶,阻碍淀粉分子靠近,可降低老化程度。
(7)共存物的影响。脂类、乳化剂、多糖、蛋白质等亲水大分子可抗老化。表面活性剂或具有表面活性的极性脂添加到面包和其他食品中,可延长货架期。 4、影响淀粉糊化的因素有哪些。
影响淀粉糊化的因素很多,首先是淀粉粒中直链淀粉与支链淀粉的含量和结构有关,其他包括以下一些因素。
(1)水分活度。食品中存在盐类、低分子量的碳水化合物和其他成分将会降低水活度,进而抑制淀粉的糊化,或仅产生有限的糊化。
(2) 淀粉结构。当淀粉中直链淀粉比例较高时不易糊化,甚至有的在温度100℃以上才能糊化;否则反之。
(3)盐。高浓度的盐使淀粉糊化受到抑制;低浓度的盐存在,对糊化几乎无影响。
(4)脂类。脂类可与淀粉形成包合物,即脂类被包含在淀粉螺旋环内,不易从螺旋环中浸出,并阻止水渗透入淀粉粒。因此,凡能直接与淀粉配位的脂肪都将阻止淀粉粒溶胀,从而影响淀粉的糊化。 (5)pH值。当食品的pH<4时,淀粉将被水解为糊精,黏度降低。当食品的pH=4~7时,对淀粉糊化几乎无影响。pH≥10时,糊化速度迅速加快。
(6)淀粉酶。在糊化初期,淀粉粒吸水膨胀已经开始,而淀粉酶尚未被钝化前,可使淀粉降解,淀粉酶的这种作用将使淀粉糊化加速。 5、美拉德反应的历程。
美拉德反应主要是指还原糖与氨基酸、蛋白质之间的复杂反应。它的反应历程如下。
开始阶段:还原糖如葡萄糖和氨基酸或蛋白质中的自由氨基失水缩合生成N-葡萄糖基胺,葡萄糖基胺经Amadori重排反应生成1-氨基-1-脱氧-2-酮糖。
中间阶段:1-氨基-1-脱氧-2-酮糖根据pH值的不同发生降解,当pH值等于或小于7时,Amadori产物主要发生1,2-烯醇化而形成糠醛(当糖是戊糖时)或羟甲基糠醛(当糖为己糖时)。当pH值大于7、温度较低时,1-氨基-1-脱氧-2-酮糖较易发生2,3-烯醇化而形成还原酮类,还原酮较不稳定,既有较强的还原作用,也可异构成脱氢还原酮(二羰基化合物类)。当pH值大于7、温度较高时,1-氨基-1-脱氧-2-酮糖较易裂解,产生1-羟基-2-丙酮、丙酮醛、二乙酰基等很多高活性的中间体。这些中间体还可继续参与反应,如脱氢还原酮易使氨基酸发生脱羧、脱氨反应形成醛类和α-氨基酮类,这个反应又称为Strecker降解反应。