土木工程材料习题集及答案 下载本文

内容发布更新时间 : 2024/12/24 3:08:08星期一 下面是文章的全部内容请认真阅读。

五、多项选择题 1(ABCD)。提示:见《通用硅酸盐水泥》(GB175-2007)的规定。 2(ABCDE)。提示:见《通用硅酸盐水泥》(GB175-2007)的规定。 3(ABCDE)。提示:生产通用硅酸盐水泥时掺加混合材料的目的是,改善水泥性能、调节强度等级、增加产量、降低成本、扩大水泥使用范围,并可利用废渣,保护环境。

4 (AE)。 提示:活性混合材料的激发剂主要是指碱性激发剂与硫酸盐激发剂。 5(ADE)。提示:硅酸盐水泥凝结硬化快,早期强度高,水化热大,抗冻性好,抗侵蚀性差。 6(ABE)。提示:硅酸盐水泥、普通硅酸盐水泥及高铝水泥的水化热较大,均不适合用于大体积混凝土工程。

7(ABCE)。硅酸盐水泥遭受化学侵蚀的外部原因是腐蚀介质的存在,其内因是水泥石结构不密实,存在毛细孔通道和容易引起腐蚀的成分如氢氧化钙、水化铝酸钙等水化产物。

8(BCE)。提示:与硅酸盐水泥相比,矿渣水泥具有水化热小、耐热性好、抗化学侵蚀性好等优点。

六、问答题 1、(1)生产通用硅酸盐水泥时掺入适量的石膏是为了调节水泥的凝结时间。若不掺入石膏,由于水泥熟料矿物中的C3A急速水化生成水化铝酸四钙晶体,使水泥浆体产生瞬时凝结,以致无法施工。当掺入石膏时,生成的水化铝酸四钙会立即与石膏反应,生成高硫型水化硫铝酸钙(即钙矾石),它是难溶于水的针状晶体,包围在熟料颗粒的周围,形成“保护膜”,延缓了水泥的水化。但若石膏掺量过多,在水泥硬化后,它还会继续与固态的水化铝酸四钙反应生成钙矾石,体积约增大1.5倍,引起水泥石开裂,导致水泥安定性不良。所以生产通用硅酸盐水泥时必须掺入适量的石膏。

(2)水泥颗粒的粗细直接影响水泥的水化、凝结硬化、水化热、强度、干缩等性质,水泥颗粒越细总表面积越大,与水接触的面积也大,水化反应速度越快,水化热越大,早期强度较高。但水泥颗粒过细时,会增大磨细的能耗和成本,且不宜久存。此外,水泥过细时,其硬化过程中还会产生较大的体积收缩。所以水泥粉磨必须有一定的细度。

(3)水泥的体积的安定性是指水泥在硬化过程中体积变化的均匀性,若体积变化不均匀,会使水泥混凝土结构产生膨胀性裂缝,甚至引起严重的工程事故。所以水泥体积安定性必须合格,

(4)水泥凝结时间、体积安定性以及强度等级都与用水量有很大的关系,为了消除差异,测定凝结时间和体积安定性必须采用标准稠度用水量;测定水泥强度则采用相同的用水量。

2、强度增长速度:28d之前甲>乙,28d之后甲<乙;水化热:甲>乙。因为水泥强度的增长,早期取决于C3S的含量,28天以后取决于C2S的含量;水化热取决于C3S和C3A的含量。

3、某些体积安定性轻度不合格或略有些不合格的水泥,在空气中放置2~4周后,水泥中的部分游离氧化钙可吸收空气中的水蒸汽而熟化为氢氧化钙,使水泥中的游离氧化钙的膨胀作用被减小或消除,因而水泥的安定性可能由轻度不合格变为合格。但必须指出,在重新检验并在体积安定性合格时方可使用,若在放置一段时间后仍不合格,则仍然不得使用。安定性合格的水泥也必须重新标定其强度等级,按标定的强度等级使用。

4、引起水泥体积安定性不良的原因是熟料中含有过多的游离氧化钙、游离氧化镁和石膏含量过多。游离氧化钙可用煮沸法检验;游离氧化镁要用蒸压法才能检验出来,石膏掺量过多造成的安定性不良,在常温下反应很慢,需长期在常温水中才能发现,两者均不便于快速检验,因此国家标准规定控制水泥中游离氧化镁及三氧化硫的含量。

在建筑工程使用安定性不良的水泥会由于不均匀的体积变化,使水泥混凝土结构产生膨胀性的裂缝,引起严重的工程事故。体积安定性不合格的水泥不得用于任何工程。

5、生产硅酸盐水泥时掺入适量石膏是为了调节水泥凝结时间,石膏是在水泥凝结硬化初期与水化铝酸四钙发生反应,此时水泥浆体具有可塑性,所以不会对水泥起到破坏作用。而当硬化的水泥石在有硫酸盐溶液的环境中生成石膏时,此生成的石膏再与水化铝酸四钙反应生成高硫型水化硫铝酸钙(钙矾石),发生体积膨胀,而此时水泥硬化后已无可塑性,呈现脆性,从而使水泥石破坏。

6、水化热的弊端:水化热大且集中放出时,对于大体积混凝土,由于热量的积蓄会引起混凝土

49

内部温度升高较多,而表面温度受环境的影响较低,内外温差产生热应力导致混凝土开裂;在夏季施工的混凝土中,会产生热膨胀,冷却后产生裂纹。

水化热的利:水化热大时,对冬季施工的混凝土有利,在保温措施下,使混凝土保持一定的温度,不致冻胀破坏,并能加速水泥的水化硬化。另外,由于内部温度较高,也可促进掺矿物掺合料的混凝土的早期水化,提高早期强度。

对于上述一些情况,在配制混凝土选择水泥时要考虑水化热的影响。

7、欲提高水泥强度,可从以下几方面考虑:(1)水泥熟料的矿物组成与细度:提高熟料中C3S的含量,可加快水泥的水化反应速度,提高早期强度;提高C2S的含量,可提高水泥的后期强度;生产道路水泥时适当提高C4AF的含量,可提高抗折强度。适当提高水泥的细度,可提高水泥的早期强度。(2)养护条件:保持足够的湿度和适当的温度,有利于水泥的凝结硬化和强度发展。(3)养护时间:养护时间越长其强度越高。(4)混合材料的品种和掺量:混合材料的品种和掺量不同,其强度发展也不同。

8、国家标准对通用硅酸盐水泥的化学性质有不溶物、烧失量、MgO、SO3、氯离子、碱含量等6项技术要求。其意义如下:

(1)不溶物指水泥熟料煅烧过程中存留的残渣,其含量可作为水泥烧成反应是否完全的指标;(2)烧失量是指将水泥在950~1000℃下灼烧15~20min的质量减少率,这些失去的物质主要是水泥中所含有的水分和二氧化碳,可大致判断水泥的受潮及风化程度;(3)熟料中游离MgO的含量是影响水泥安定性的一个重要指标;(4)SO3也是影响水泥安定性的重要指标之一;(5)氯离子会加速混凝土中钢筋的锈蚀作用,因此对其含量也必须加以限制;(6)碱含量指水泥中碱性氧化物如氧化钠和氧化钾的含量。碱性氧化物过多,如遇混凝土中的骨料含有活性二氧化硅时,则有可能引起碱骨料反应,导致耐久性不良。

9、硅酸盐水泥腐蚀的类型有4种:溶出性腐蚀(软水腐蚀)、溶解性化学腐蚀(一般酸或盐类腐蚀)、膨胀性化学腐蚀(硫酸盐腐蚀)和强碱的腐蚀。

(1)溶出性腐蚀(软水腐蚀):当水泥石与软水长期接触时,水泥石中的氢氧化钙会溶于水中,若周围的水是流动的或有压力的,氢氧化钙将不断地溶解流失,使水泥石的碱度降低,同时由于水泥的水化产物必须在一定的碱性环境中才能稳定,氢氧化钙的溶出又导致其他水化产物的分解,最终使水泥石破坏。

(2)溶解性化学腐蚀:其实质是离子交换反应,水中的酸类或盐类与水泥石中的氢氧化钙起置换反应,生成易溶性盐或无胶结力的物质,使水泥石破坏。这类腐蚀有碳酸、一般酸及镁盐的腐蚀。

(3)膨胀性化学腐蚀以硫酸盐腐蚀为代表,其机理是水泥石中的氢氧化钙与硫酸盐类物质反应生成高硫型水化硫铝酸钙(钙矾石), 体积增大1.5~2倍,导致水泥石开裂破坏。

(4)强碱的腐蚀:强碱溶液与水泥水化产物反应生成的胶结力差且易为碱液溶析的物质,或因碱液渗入水泥石孔隙中后,又在空气中干燥呈结晶析出,由结晶产生压力使水泥石膨胀破坏。

防止水泥石腐蚀的措施有:(1)根据环境特点,合理选择水泥品种;(2)提高水泥石的密实度;(3)在水泥石的表面加做保护层。

10、因为水泥受潮后,颗粒表面会发生水化而结块,导致强度降低,甚至丧失胶凝能力。即使在储存条件良好的情况下,水泥也会吸收空气中的水分和二氧化碳,发生缓慢水化和碳化,导致强度降低,此即水泥的风化。因此,水泥的储存期一般不超过三个月。水泥要按不同品种、强度等级及出厂日期分别存放,并加以标识,先存先用。不同品种的水泥混合使用时,容易造成凝结异常或其它事故。

11、根据这三种材料的特性,用加水的方法来辨认,加水后在5~30min内凝结并具有一定强度的是建筑石膏,发热量最大且有大量水蒸气放出的是生石灰,在45min~12h内凝结硬化的则是白水泥。

12、常用的活性混合材料有粒化高炉矿渣、火山灰质混合材料、粉煤灰等。活性混合材料产生

50