数学建模习题及答案课后习题. 下载本文

内容发布更新时间 : 2024/11/14 11:55:18星期一 下面是文章的全部内容请认真阅读。

6. 连续形式: y(t)表示某种群t时刻的数量(人口)

dyy?ry(1?) dtNm离散形式: yn表示某种群第n代的数量(人口)

yn?1?yn?ryn(1?yn),n?1,2,? Nmyn) 的平Nm若yn?Nm, 则yn?1,yn?2,??Nm, y*?Nm是平衡点; yn?1?yn?ryn(1?衡点为y*?Nm. yn?1?(r?1)yn?1????r1r?1?, 其中yn?的平衡点为x*?r?1b(r?1)Nm?此时的差分方程变为 b?1?r,x?bx(1?, x)n?ryn/(1?r)Nm,f(x)xn?1?bxn(1?xn)?f(xn)n?1,2,?由x?f(x)?bx(1?x)可得平衡点x?1?**.

1*,x?0. b*在平衡点x?0处,由于f?(0)?b?1,因此, x?0不稳定.

1**处, 因f?(x)?b(1?2x)?2?b,所以 b1**(i) f?(x)?1?b?3 当b?3时, 平衡点x?1?不稳定;

b1**(ii) f?(x)?1?1?b?3 当1?b?3时, 平衡点x?1?不稳定.

b在在平衡点x?1?*

第三部分 课后习题

1. 判断下列数学模型是否为线性规划模型。(a,b,c为常数,x,y为变量)

(1)maxf?3x1+5x2?7x3

?x1?2x2?6x3?8?5x?x?8x?20?123s.t??3x1?4x2?12??x1,x2?0n

(2)maxf??cjxjj?1 ?n??aijxj?bi(i?1,2,?,m)s.t?j?1?x?0(j?1,2,?,n)?jmn(3)minf??aixi??bjyj,i?1j?12s.t.xi?yi?cij22

(i?1,2,?,m;j?1,2,?,m)

2. 将下述线性规划问题化为标准形式。

(1)minZ?x1?2x2?3x3??2x1?x2?x3?9??3x?x?2x?4?123??4x1?2x2?3x3??6??x1?0,2?x2?6,x3取值无约束 (2)maxZ??|x|?|y|?x?y?2??x?3?x,y无约束?(3)minf?2x1?x2?2x3??x1?x2?x3?4 ?s.t.??x1?x2?x3?6?x?0,x?0,x无约束23?1

(4)maxf?2x1?x2?3x3?x4?x1?x2?x3?x4?7?2x?3x?5x??8 ?123s.t.??2x3?2x4?1?x1??x1,x3?0,x2?0,x4无约束

3. 用单纯形法求解线性规划问题。

maxf?2x1?5x2?x1?4?2x?12 ?2s.t.??3x1?2x2?18??x1,x2?0

4. 检验函数f(x)?100从而(x2?x1)2?(1?x1)2在x*?(1,1)T处有g*?0,G*正定,

2x*为极小点。证明G为奇异当且仅当x2?x12?0.005,从而证明对所有满足f(x)?0.0025的x,G是正定的。

5. 求出函数f(x)?2x1?x2?2x1x2?2x1?x1的所有平稳点;问哪些是极小点?是否为

全局极小点?

6. 应用梯度法于函数f(x)?10x1?x2,取x

22(1)2234?(0.1,1)T.迭代求x(2).

第三部分 课后习题答案

1. 答案:(1)是 (2)不是 (3)是

2. 答案:(1)

令x1'??x1,x3?x3'?x3'',x2'?x2?2.

引入松弛变量x4,x6及剩余变量x5,可得到如下的标准形式:minz??x1'?2x2'?3x3'?3x3''?4

?2x1'?x2'?x3'?x3''?x4?7?3x'?x'?2x'?2x''?x?212335? ?s.t?4x1'?2x2'?3x3'?3x3''?2?x'?x?4?26??x1',x2',x3',x3'',x4,x5,x6?0(2)令

?x,x?0;?0,x?0 ?y,y?0;x1??,x2??y1??,?0,x?0.??x,x?0?0,y?0.引入松弛变量

?0,y?0

y2????y,y?0s,t.可得到如下的标准形式:

minz'?x1?x2?y1?y2

?x1?x2?y1?y2?s?2 ?s.t?x1?x2?t?3?x,x,y,y,s,t?0?1212?x3'?x3''

(3)解:令x1'??x1,x3minz??2x1'?x2?2x3'?2x3'' 引入松弛变量x4,可得到如下的标准形式:?x1'?x2?x3'?x3''?4?s.t?x1'?x2?x3'?x3''?x4?6

?x',x,x',x'',x?0?12334(4)解:令x2'??x2,x4?x4'?x4''

引入松弛变量x5,和剩余变量x6,可得到如下的标准形式:

minf???f??2x1?x2'?3x3?x4'?x4''?x1?x2'?x3?x4'?x4\?x5?7?2x?3x'?5x??8?1 23s.t.??2x3?2x4'?2x4\?x6?1?x1??x1,x2',x3,x4',x4\,x5,x6?0

3. 答案:在上述问题的约束条件中加入松弛变量x3,x4,x5,将原问题化成标准形式如下:

minf???f??2x1?5x2?x3?4?x1?2x?x4?12 ?2s.t.??x5?18?3x1?2x2??x1,x2,?x5?0其现成可行基(?3,?4,?5)对应的单纯形表如下:

x1 x2 x3 x4 x5 f 2 1 0 3 5 0 2 2 0 1 0 0 0 0 1 0 0 0 0 1 0 4 12 18

x3 x4 x5 换基迭代,得

x1 x2 x3 x4 x5 f 2 1 0 3 0 0 1 0 0 1 0 0 - 5/2 0 0 1/2 -1 0 0 1 -30 4 6 6

x3 x2 x5 换基迭代,得

x1 x2 x3 x4 x5 f 0 0 0 1 0 0 1 0 0 1 0 0 -11/6 -2/3 1/3 1/2 -1/3 -1/3 0 1/3 -34 2 6 2 x3 x2 x1 故最优解为X*?(2,6,2,0,0)T,目标函数的最优值为f*?34.

??400x1x2?400x13?2x1?2??, 4. 证明: g(x)??2??200(x2?x1)????400x2?1200x12?2?400x1??, G(x)????400x1200????802?400?经检验,g(x)?0,G(x)????400200??正定,

??**