考研必备资料数学公式大全( 考研必备,) 下载本文

内容发布更新时间 : 2024/5/10 2:41:19星期一 下面是文章的全部内容请认真阅读。

重积分及其应用:

??f(x,y)dxdy???f(rcos?,rsin?)rdrd?DD?曲面z?f(x,y)的面积A???D??z???z?1???????y??dxdy?x????22平面薄片的重心:x?Mx?M??x?(x,y)d?D???(x,y)d?DD,  y?MyM???y?(x,y)d?D???(x,y)d?DD

平面薄片的转动惯量:对于x轴Ix???y2?(x,y)d?,  对于y轴Iy???x2?(x,y)d?平面薄片(位于xoy平面)对z轴上质点M(0,0,a),(a?0)的引力:F?{Fx,Fy,Fz},其中:Fx?f??D?(x,y)xd?(x?y?a)2222,  Fy?f??3D?(x,y)yd?(x?y?a)2222,  Fz??fa??3D?(x,y)xd?(x?y?a)22322柱面坐标和球面坐标:

?x?rcos??柱面坐标:f(x,y,z)dxdydz????F(r,?,z)rdrd?dz,?y?rsin?,   ??????z?z?其中:F(r,?,z)?f(rcos?,rsin?,z)?x?rsin?cos??2球面坐标:?y?rsin?sin?,  dv?rd??rsin??d??dr?rsin?drd?d??z?rcos??2?

?r(?,?)2F(r,?,?)rsin?dr?0????f(x,y,z)dxdydz????F(r,?,?)rsin?drd?d???d??d??002重心:x?1M???x?dv,  y???1M???y?dv,  z???1M???z?dv,  其中M?x?????dv???转动惯量:Ix????(y2?z2)?dv,  Iy????(x2?z2)?dv,  Iz????(x2?y2)?dv曲线积分:

第一类曲线积分(对弧长的曲线积分):?x??(t)设f(x,y)在L上连续,L的参数方程为:,  (??t??),则:??y??(t)?L?x?t22??f(x,y)ds??f[?(t),?(t)]?(t)??(t)dt  (???)  特殊情况:??y??(t)??第二类曲线积分(对坐标的曲线积分):?x??(t)设L的参数方程为,则:?y??(t)???P(x,y)dx?Q(x,y)dy???{P[?(t),?(t)]??(t)?Q[?(t),?(t)]??(t)}dtL两类曲线积分之间的关系:?Pdx?Qdy??(Pcos??Qcos?)ds,其中?和?分别为LLL上积分起止点处切向量的方向角。?Q?P?Q?P格林公式:(?)dxdy?Pdx?Qdy格林公式:(?)dxdy??Pdx?Qdy??????x?y?x?yDLDL?Q?P1当P??y,Q?x,即:??2时,得到D的面积:A???dxdy??xdy?ydx?x?y2LD·平面上曲线积分与路径无关的条件:1、G是一个单连通区域;2、P(x,y),Q(x,y)在G内具有一阶连续偏导数,且减去对此奇点的积分,注意方向相反!·二元函数的全微分求积:?Q?P在=时,Pdx?Qdy才是二元函数u(x,y)的全微分,其中:?x?y(x,y)?Q?P=。注意奇点,如(0,0),应?x?y

u(x,y)?(x0,y0)?P(x,y)dx?Q(x,y)dy,通常设x0?y0?0。曲面积分:

22对面积的曲面积分:f(x,y,z)ds?f[x,y,z(x,y)]1?z(x,y)?z(x,y)dxdyxy?????Dxy对坐标的曲面积分:??P(x,y,z)dydz?Q(x,y,z)dzdx?R(x,y,z)dxdy,其中:?号;??R(x,y,z)dxdy????R[x,y,z(x,y)]dxdy,取曲面的上侧时取正?Dxy号;??P(x,y,z)dydz????P[x(y,z),y,z]dydz,取曲面的前侧时取正?Dyz

??Q(x,y,z)dzdx????Q[x,y(z,x),z]dzdx,取曲面的右侧时取正号。?Dzx两类曲面积分之间的关系:??Pdydz?Qdzdx?Rdxdy???(Pcos??Qcos??Rcos?)ds??高斯公式:

???(??P?Q?R??)dv???Pdydz?Qdzdx?Rdxdy???(Pcos??Qcos??Rcos?)ds?x?y?z??高斯公式的物理意义——通量与散度:??P?Q?R?散度:div????,即:单位体积内所产生的流体质量,若div??0,则为消失...?x?y?z??通量:??A?nds???Ands???(Pcos??Qcos??Rcos?)ds,?因此,高斯公式又可写成:???divAdv???Ands?????斯托克斯公式——曲线积分与曲面积分的关系:

??(??R?Q?P?R?Q?P?)dydz?(?)dzdx?(?)dxdy??Pdx?Qdy?Rdz?y?z?z?x?x?y?cos???yQcos???zR

dydzdzdxdxdycos?????上式左端又可写成:??????x?y?z?x??PQRP?R?Q?P?R?Q?P空间曲线积分与路径无关的条件:?, ?, ??y?z?z?x?x?yijk????旋度:rotA??x?y?zPQR???向量场A沿有向闭曲线?的环流量:Pdx?Qdy?Rdz?A???tds??常数项级数:

1?qn等比数列:1?q?q???q?1?q(n?1)n 等差数列:1?2?3???n?2111调和级数:1?????是发散的23n2n?1级数审敛法:

1、正项级数的审敛法——根植审敛法(柯西判别法):???1时,级数收敛?设:??limnun,则???1时,级数发散n?????1时,不确定?2、比值审敛法:???1时,级数收敛U?设:??limn?1,则???1时,级数发散n??Un???1时,不确定?3、定义法:sn?u1?u2???un;limsn存在,则收敛;否则发散。n??

交错级数u1?u2?u3?u4??(或?u1?u2?u3??,un?0)的审敛法——莱布尼兹定理:? ?un?un?1如果交错级数满足s?u1,其余项rn的绝对值rn?un?1。?limu?0,那么级数收敛且其和??n??n绝对收敛与条件收敛:

(1)u1?u2???un??,其中un为任意实数;(2)u1?u2?u3???un??如果(2)收敛,则(1)肯定收敛,且称为绝对收敛级数;如果(2)发散,而(1)收敛,则称(1)为条件收敛级数。 1(?1)n调和级数:?n发散,而?n收敛;1  级数:?n2收敛;p?1时发散1  p级数:?np  p?1时收敛幂级数:

1x?1时,收敛于1?x1?x?x2?x3???xn??  x?1时,发散对于级数(3)a0?a1x ?a2x2???anxn??,如果它不是仅在原点收敛,也不是在全x?R时收敛数轴上都收敛,则必存在R,使x?R时发散,其中R称为收敛半径。x?R时不定1

??0时,R?求收敛半径的方法:设liman?1??,其中an,an?1是(3)的系数,则??0时,R???n??an????时,R?0?函数展开成幂级数:

f??(x0)f(n)(x0)2函数展开成泰勒级数:f(x)?f(x0)(x?x0)?(x?x0)???(x?x0)n??2!n!f(n?1)(?)余项:Rn?(x?x0)n?1,f(x)可以展开成泰勒级数的充要条件是:limRn?0

n??(n?1)!f??(0)2f(n)(0)nx0?0时即为麦克劳林公式:f(x)?f(0)?f?(0)x?x???x??2!n!一些函数展开成幂级数:

m(m?1)2m(m?1)?(m?n?1)nx???x??   (?1?x?1)2!n! 2n?1x3x5xsinx?x?????(?1)n?1??   (???x???)3!5!(2n?1)!(1?x)m?1?mx?欧拉公式:

?eix?e?ixcosx???2 eix?cosx?isinx   或?ix?ix?sinx?e?e?2?三角级数:

a0?f(t)?A0??Ansin(n?t??n)???(ancosnx?bnsinnx)2n?1n?1其中,a0?aA0,an?Ansin?n,bn?Ancos?n,?t?x。正交性:1,sinx,cosx,sin2x,cos2x?sinnx,cosnx?任意两个不同项的乘积在[??,?]上的积分=0。傅立叶级数:

?