内容发布更新时间 : 2024/12/23 3:10:37星期一 下面是文章的全部内容请认真阅读。
(b)图8.3
(c)图8.4
(d)图8.5
第九章
9.1 股票现价为$40。已知在一个月后股价为$42或$38。无风险年利率为8%(连续复利)。执行价格为$39的1个月期欧式看涨期权的价值为多少?
31
解:考虑一资产组合:卖空1份看涨期权;买入Δ份股票。
若股价为$42,组合价值则为42Δ-3;若股价为$38,组合价值则为38Δ 当42Δ-3=38Δ,即Δ=0.75时,
组合价值在任何情况下均为$28.5,其现值为:28.5e?0.08*0.08333?28.31, 即:-f+40Δ=28.31 其中f为看涨期权价格。 所以,f=40×0.75-28.31=$1.69
另解:(计算风险中性概率p) 42p-38(1-p)=
40e0.08*0.08333,p=0.5669
期权价值是其期望收益以无风险利率贴现的现值,即:
f=(3×0.5669+0×0.4331)e?0.08*0.08333=$1.69
9.2 用单步二叉树图说明无套利和风险中性估值方法如何为欧式期权估值。
解:在无套利方法中,我们通过期权及股票建立无风险资产组合,使组合收益率等价于无风险利率,从而对期权估值。
在风险中性估值方法中,我们选取二叉树概率,以使股票的期望收益率等价于无风险利率,而后通过计算期权的期望收益并以无风险利率贴现得到期权价值。
9.3什么是股票期权的Delta?
解:股票期权的Delta是度量期权价格对股价的小幅度变化的敏感度。即是股票期权价格变化与其标的股票价格变化的比率。
9.4某个股票现价为$50。已知6个月后将为$45或$55。无风险年利率为10%(连续复利)。执行价格为$50,6个月后到期的欧式看跌期权的价值为多少?
解:考虑如下资产组合,卖1份看跌期权,买Δ份股票。 若股价上升为$55,则组合价值为55Δ;
若股价下降为$45,则组合价值为:45Δ-5
当55Δ=45Δ-5,即Δ=-0.50时,6个月后组合价值在两种情况下将相等,均为$-27.5,其现值为:
?27.5e?0.10*0.50??$26.16,即:
-P+50Δ=-26.16
所以,P=-50×0.5+26.16=$1.16 另解:求风险中性概率p
55p?45(1?p)?50e 所以,p=0.7564
看跌期权的价值P=(0*0.7564?5*0.2436)e?0.10*0.500.10*0.50
?$1.16
9.5 某个股票现价为$100。有连续2个时间步,每个时间步的步长为6个月,每个单步二叉树预期上涨10%,或下降10%。无风险年利率为8%(连续复利)。执行价格为$100的一年期欧式看涨期权的价值为多少? 解:由题意得,u=1.10,d=0.90,r=0.08
32
所以,p?
erT?du?d?e0.08*0.50?0.901.10?0.90?0.7041
计算二叉树图的结果如下 110 14.2063 100 9.6104 90 0
图9.1 则看涨期权价值为:
121 21 99 0 81 19 e
?2*0.08*0.50*(0.7041*21?2*0.7041*0.2959*0?0.2959*0)
22?9.619.6 考虑习题9.5中的情况,执行价格为$100的一年期欧式看跌期权的价值为多少?证明欧式看涨期权和欧式看跌期权满足看涨看跌期权的平价关系。 解:如上题,计算二叉树图的结果如下 110 0.2843 100 1.9203 90 6.0781 图9.2
则看跌期权的价值为:
e?2*0.08*0.50121 0 99 1 81 19 *(0.7041*0?2*0.7041*0.2959*1?0.2959*19)22
?1.92?rT?0.08*1.00?C?100e?9.61?101.92 S?P?100?1.92?101.92, Xe 33
所以有:S?P?Xe?rT?C即:期权平价公式成立。
9.7 考虑这样一种情况,在某个欧式期权的有效期内,股票价格的运动符合两步二叉树运动模式。请解释为什么用股票和期权组合的头寸在期权的整个有效期内不可能一直是无风险的。
解:无风险组合可由卖空1份期权及买入Δ份股票构成。但由于Δ在期权的有效期内是会变化的,因而,无风险组合总是会变化。
所以,用股票和期权组合的头寸不可能是一直无风险的。
9.8 某个股票现价为$50。已知在两个月后,股票价格为$53或$48。无风险年利率为10%(连续复利)。请用无套利原理说明,执行价格为$49的两个月后到期的欧式看涨期权的价值为多少? 解:两个月后欧式看涨期权的价值将为$4(当股价为$53)或$0(当股价为$48)。 考虑如下资产组合:+Δ份股票
-1份看涨期权
则两个月后组合价值将为53Δ-4或48Δ,当
53Δ-4=48Δ,即Δ=0.8时,
则两个月后无论股价如何,组合价值将均为38.4。该组合现值为: 0.8×50-f 其中f是期权价值。
因为该资产组合是无风险利率投资,所以有:
(0.8*50-f)e0.10*0.16667?38.4 即: f=2.23 因此,期权的价值为$2.23。
此外,此题也可直接根据公式(9.2)和(9.3)计算,由题意可得: u?1.06,d?0.96,则:
e0.10*0.16667 p??0.961.06?0.96?0.10*0.16667?0.5681 且
f?e*0.5681*4?2.23
9.9 某个股票现价为$50。已知在4个月后,股票价格为$75或$85。无风险年利率为5%(连续复利)。请用无套利原理说明,执行价格为$80的4个月后到期的欧式看跌期权的价值为多少? 解:4个月后欧式看涨期权的价值将为$5(当股价为$75)或$0(当股价为$85)。 考虑如下资产组合:-Δ份股票 +1份看跌期权
(注:看跌期权的套期保值率Δ是负值)。 则两个月后组合价值将为-75Δ+5或-85Δ,当
-75Δ+5=-85Δ,即Δ=-0.5时,
则两个月后无论股价如何,组合价值将均为42.5。该组合现值为: 0.5×80+f 其中f是期权价值。
因为该资产组合是无风险的,所以有:
34
(0.5*80?f)e0.05*0.3333?42.5 即:
f?1.80
因此,看跌期权的价值为$1.80
此外,此题也可直接利用公式(9.2)和(9.3)计算。由题意可得: u?1.0625,d?0.9375 则:
e0.05*0.3333 p??0.93751.0625?0.9375?0.6345, 1-p=0.3655
且 f?e?0.05*0.33333*0.3655*5?1.80
9.10某个股票现价为$50。已知在6个月后,股价将变为$60或$42。无风险年利率为12%(连续复利)。计算执行价格为$48,有效期为6个月的欧式看涨期权的价值为多少。证明无套利原理和风险中性估价原理得出相同的答案。
解:6个月后期权的价值为$12(当股价为$60时)或$0(当股价为$42时)。 考虑如下资产组合:
+Δ份股票 -1份看涨期权 则资产组合价值为60Δ-12或42Δ。 当60Δ-12=42Δ,即Δ=0.67时,
6个月后,无论股价如何变化,该资产组合的价值将均为$28;此时组合的Δ 值是无风险的。组合的现值为:
50Δ-f 其中f为期权的价值。
(1)根据无套利原理,该资产组合必须是无风险的,因而有: (50*0.67?f)*e0.12*0.50?28
则有: f=6.96
(2)根据风险中性估价定理,设p为风险中性条件下股价上升的概率,有: 60p?42(1?p)?50e 即: p?0.6162 在风险中性世界,期权的期望价值为:
12×0.6162+0×0.3838=7.3944 其现值为:
7.3944e0.12*0.250.12*0.25
?6.96
所以,无套利原理与风险中性估价定理的计算结果一致。
9.11某个股票现价为$40。已知在3个月后,股价将变为$45或$35。无风险年利率为8%(连续复利)。计算执行价格为$40,有效期为3个月的欧式看跌期权的价值。证明无套利原理和风险中性估价原理得出相同
35