内容发布更新时间 : 2024/12/24 10:52:02星期一 下面是文章的全部内容请认真阅读。
二次函数与多边形存在性问题
最经常遇到的中考压轴题,通常解决思路在于等腰三角形的定义、性质;平行四边形的性质;作图是第一步,注意多种情况分类讨论。
解答题(共15小题)
1.如图,二次函数y=ax2+bx的图象经过A(1,﹣1)、B(4,0)两点. (1)求这个二次函数解析式;
(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.
2.已知在平面直角坐标系中有三个点,点A(0,3),B(﹣3,0),C(1,0). (1)求经过A、B、C三点的二次函数解析式;
(2)在平面直角坐标系中再找一个点D,使A、B、C、D四点构成一个平行四边形.
3.如图,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C.且OA=2,OC=OB=3. (1)求抛物线的解析式;
(2)作OD⊥BC于D,与抛物线相交于点E,试在抛物线上确定点P,使得四边形OBEP为平行四边形,并说明理由.
4.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过A(3,0)、B(1,0)、C(0.3)三点,设该二次函数的顶点为G.
(1)求这个二次函数的解析式及其图象的顶点G的坐标; (2)求tan∠ACG的值;
(3)如该二次函数的图象上有一点P,x轴上有一点E,问是否存在以A、G、E、P为顶点的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
5.如图抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,顶点为D,连接AC、CD、AD.
(1)求该二次函数的解析式; (2)求△ACD的面积;
(3)若点Q在抛物线的对称轴上,抛物线上是否存在点P,使得以A、B、Q、P四点为顶点的四边形为平行四边形?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.
6.如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B. (1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
7.如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点B(0,﹣5). (1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. (3)在(2)的条件下,在x轴上找一点M,使得△APM是等腰三角形,请直接写出所有符合条件的点M的坐标.
8.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D. (1)求该二次函数的解析式;
(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由.