内容发布更新时间 : 2024/11/19 19:28:41星期一 下面是文章的全部内容请认真阅读。
28.如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG围成,其中A1、G、B1在
上,A2、
A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn (1)求d的值;
(2)问:CnDn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?
【考点】垂径定理.
【分析】(1)根据d=FH2,求出EH2即可解决问题.
(2)假设CnDn与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由r÷
r=2+2
≈4.8,求出n即可解决问题.
【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2, ∴EH1=
r,FH1=r﹣
r)=
r, r,
∴d=(r﹣
第 16 页 共 16 页
(2)假设CnDn与点E间的距离能等于d,由题意这个方程n没有整数解, 所以假设不成立. ∵
r÷
r=2+2
≈4.8,
r﹣4×
r=
?r=r,
∴n=6,此时CnDn与点E间的距离=
r.
第 17 页 共 17 页