细胞生物学课后练习题及答案 下载本文

内容发布更新时间 : 2024/5/10 0:29:56星期一 下面是文章的全部内容请认真阅读。

c. 调节分泌蛋白的活性; d. 细胞间化学信号传递。 (3) 胶原,弹性蛋白 :结构作用 (4) 纤连蛋白,层粘连蛋白:黏着作用。 10、胶原纤维的装配过程都经过哪些步骤?

胶原纤维是经多步过程装配而成,包括胶原分子的合成、分泌和修饰等步骤。

1) 内质网膜结合的核糖体上合成胶原分子的多肽链,最初合成的多肽链为前体肽链,称为前α链(pro-αchain)。 2) 合成的前体肽链进入内质网腔,此前体链除在氨基端带有信号肽序列外,在氨基端和羧基端尚带有称为前肽(propeptides)的氨基酸序列。在内质网腔中,前肽链中的脯氨酸和赖氨酸残基分别被羟化为羟脯氨酸和羟赖氨酸。每一条前α链与其它两条前α链通过由羟基形成的氢键相互结合,构成了3股螺旋的前胶原(procollagen)分子。此分子的装配起始于内质网,后经高尔基体装配完成,被包装到分泌泡中,分泌到细胞外。

3) 前胶原被分泌到细胞外之后,前肽序列被专一的蛋白质水解酶切除,前胶原转变成了胶原分子。

4) 胶原分子在细胞外又进一步装配成了胶原原纤维,最后后者又装配成了胶原纤维。原纤维一旦形成,胶原分子便通过在赖氨酸间的共价结合,加固了原纤维的结构。这种结合要依赖于原纤维结合胶原(fibril-associated collagen)(如IX型和II型胶原分子)的参与。

11、纤连蛋白分子有哪些结构特点?如何发挥作用?

1) 分子是由两个亚基组成的二聚体,在靠近羧基端有一对二硫键将两个亚基连在一起,使两个亚基排成“V”字形。亚基多肽链折叠成5-6个棒状和球形功能区,各功能区分别可同特定的分子或细胞发生转移结合,功能区之间的连接部位可折屈,对蛋白酶敏感。

2) 多肽链含有三种重复序列,即I、II、III型组件,功能区即是由这三种组件重复组合而成。在III型重复中含有特异的三肽序列,-Arg-Gly-Asp-(RGD),此RGD序列可被细胞表面基质受体中的整联蛋白(integrin)所识别,从而同细胞结合,促使细胞同基质结合。促进细胞迁移,对细胞的迁移有导向作用

第五章 物质的跨膜运输与信号传递

1、物质跨膜运输有哪几种方式?它们的异同点。

跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。

1) 简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能; 2) 协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能; 3) 主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。 2、比较主动运输与被动运输的特点及其生物学意义。 1)主动运输的特点及其生物学意义:

特点:由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向浓度高的一侧进行跨膜转运。需要与某种释放能量的过程相偶联。

类型:由ATP直接提供能量(Na+-K+泵、Ca2+泵、)、间接提供能量(Na+-K+泵或H+泵、载体蛋白的协同运输)、光驱动的三种类型。

生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养;植物细胞、真菌(包括酵母)和细菌细胞借助膜上的H+泵,将H+泵出细胞,建立跨膜的H+电化学梯度,利用H+电化学梯度来驱动主动转运溶质进入细胞;Ca2+泵主要存在于细胞膜和内质网膜上,将Ca2+输出细胞或泵入内质网腔中储存,以维持细胞内低浓度的游离Ca2+,Ca2+对调节肌细胞的收缩与舒张至关重要。 2)被动运输的特点及其生物学意义:

特点:物质的跨膜运输的方向是由高浓度向低浓度,运输动力来自物质的浓度梯度,不需要细胞提供代谢能量。 类型:单扩散和载体介导的协助扩散。协助扩散的载体为:载体蛋白和通道蛋白,载体蛋白既可介导被动运输和主动运输;通道蛋白只能介导被动运输。

生物学意义:每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运;通道蛋白是多次跨膜亲水、离子通道,充许适宜大小分子和带电荷的离子通过,其显著特点为:⑴具有离子选择性,转运速率

- 6 -

高,净驱动力是溶质跨膜的电化学梯度;⑵离子通道是门控的,其活性是由通道开或关两种构象所调节,通过通道开关应答于适当地信号。

3、说明Na+-K+泵的工作原理及其生物学意义。

Na+-K+泵是一种典型的主动运输方式,由ATP直接提供能量。Na+-K+泵存在于细胞膜上,是由α和β二个亚基组成的跨膜多次的整合膜蛋白,具有ATP酶活性。

工作原理:在细胞内侧α亚基与Na+相结合促进ATP水解,α亚基上的天门冬氨酸残基磷酸化引起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点结合,使其去磷酸化,α亚基构象再度发生变化将K+泵进细胞,完成整个循环。Na+依赖的磷酸化和K+依赖的去磷酸化引起构象变化有序交替进行。每个循环消耗一个ATP分子,泵出3个Na+和泵进2个K+。

生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养。

4、动物细胞、植物细胞和原生动物细胞应付低渗膨胀的机制有何不同?

动物细胞借助Na+-K+泵维持细胞内低浓度溶质;植物细胞依靠坚韧的细胞壁避免膨胀和破裂;原生动物通过收缩胞定时排出进入细胞过量的水而避免膨胀。 5、比较胞饮作用和吞噬作用的异同。

胞饮和吞噬是细胞胞吞作用的两种类型。胞饮作用是一个连续发生的过程,所有真核细胞都能通过胞饮作用连续摄入溶质和分子;吞噬作用首先需要被吞噬物与细胞表面结合并激活细胞表面受体,是一个信号触发过程。胞饮泡的形成需要网格蛋白、结合素蛋白和结合蛋白等的帮助;吞噬泡的形成则需要微丝及其结合蛋白的帮助,在多细胞动物体内,只有某些特化细胞具有吞噬功能。

6、比较组成型胞吐途径和调节型胞吐途径的特点及其生物学意义。

细胞的胞吐作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜运出细胞的过程。 特点:

1)真核细胞从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程即组成型的胞吐途径。通过连续性的组成型胞吐途径:⑴细胞新合成的囊泡膜的蛋白和脂类不断地供应质膜更新,以确保细胞分裂前质膜的生长;⑵囊泡内可溶性蛋白分泌到细胞外,成为质膜外围蛋白、胞外基质组分、营养成分或信号分子等。

2)特化的分泌细胞调节型胞吐途径存在于特殊机能的细胞中,分泌细胞产生的分泌物(激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。 生物学意义:细胞的质膜更新,维持细胞的生存与生长。 7、质膜在细胞吞吐作用(cytosis)中起什么作用? 1) 识别被内吞物质; 2) 形成陷穴小泡;

3) 包围细胞外物质,形成小泡;脱离质膜,进入细胞内部; 4) 同细胞质中的小泡融合,把其所含的物质吐到细胞外。 8、试述细胞以哪些方式进行通讯?各种方式之间有何不同?

细胞通讯是指一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。 1)细胞的通讯方式

细胞以三种方式进行通讯:⑴细胞通过分泌化学信号进行细胞间相互通讯,这是多细胞生物包括动植物最普遍采用的通讯方式;⑵细胞间接触性依赖的通讯,细胞间直接接触,通过与质膜结合的信号分子影响其他细胞;⑶细胞间形成间隙连接使细胞质相互沟通,通过交换小分子来实现代谢偶联或电偶联。 2)细胞通讯方式之间不同点

⑴通过细胞分泌化学信号的通讯方式:细胞间的通讯需要细胞分泌化学信号;

⑵细胞接触性依赖的通讯方式:细胞间直接接触,不需要分泌的化学信号分子的释放,是通过与质膜结合的信号分子与其相接触的靶细胞质膜上的受体分子相结合,影响其他细胞。

⑶细胞间隙连接的通讯方式:细胞间通过孔隙交换小分子实现代谢偶联或电偶联。 9、细胞有哪几种方式通过分泌化学信号进行细胞间相互通讯?

- 7 -

??内分泌:由内分泌细胞分泌信号分子(激素)到血液中,通过血液循环运送到体内各个部位,作用于靶细胞;????旁分泌:细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞,对创伤或感染组织刺激细胞增殖以恢复功能具有重要意义;?

???自分泌:细胞对自身分泌的物质产生反应,常见于病理如肿瘤细胞的合成和释放生长因子刺激自身,导致肿瘤细胞的增殖失控;?

??通过化学突触传递神经信号:当神经元细胞在接受环境或其他神经细胞的刺激后,神经信号通过动作电位的形式沿轴突以高达100m/s的速度传至末梢,刺激突触前突起终末分泌化学信号(神经递质或神经肽),快速扩散,实现电信号-化学信号-电信号转换和传导。

10、何谓信号传递中的分子开关蛋白?举例说明其作用机制。

分子开关蛋白的概念:具有可逆磷酸化控制的蛋白激酶称为分子开关蛋白。

分子开关的蛋白有两类:1)通过磷酸化传递信号的开关蛋白:其活性由蛋白激酶使之磷酸化而开启,由蛋白磷酸酯酶使之去磷酸化而关闭;2)通过结合蛋白传递信号的分子开关蛋白:由GTP结合蛋白组成,结合GTP而活化,结合GDP而失活。

作用机制:如NO(包内第二信使分子)在导致血管平滑肌舒张中的作用机制,即NO导致靶细胞内的可溶性鸟苷酸活化,血管内皮细胞释放NO,应答神经终末的刺激,NO扩散进入靶细胞与靶蛋白结合,快速导致血管平滑肌的舒张,从而引起血管扩张、血流畅通。

11、简要说明G蛋白偶联受体介导的信号通路有何特点。

G蛋白偶联受体所介导信号通路主要包括cAMP信号通路和磷脂酰肌醇信号通路。

cAMP信号通路:细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被磷酸二酯酶限制型降解清除。 其反应链为:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→cAMP→cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。

磷脂酰肌醇信号通路:通过G蛋白偶联受体介导的磷脂酰肌醇信号通路的信号转导是通过效应酶磷酸酯酶C(PLC)完成的,是双信使系统”反应链。

“双信使系统”反应链:胞外信号分子→G-蛋白偶联受体→G-蛋白→

→IP3(三磷酸肌醇)→胞内Ca2+浓度升高→Ca2+结合蛋白(CaM)→细胞反应

磷脂酶C(PLC) {

→DG(二酰基甘油)→激活PKC(DC激活蛋白激酶C)→蛋白磷酸化或促Na+/H+交换使胞内pH升高 12、说明胞内信号传递级联反应链传递信号的原理。基因表达如何通过信号传递受到调控? 1) 原理

(1) 靶细胞的受体与配体的专一结合,受体同信号分子结合后被激活,把细胞外信号转变为胞内信号。 (2) 经过一系列信号传递蛋白:

可被蛋白质激酶磷酸化的蛋白质:一类是丝氨酸/苏氨酸激酶,可催化蛋白质中的丝氨酸和苏氨酸磷酸化;另一类是酪氨酸激酶,催化蛋白质中的酪氨酸磷酸化。这两类蛋白质受到激活时,获得了1至多个磷酸基,失活时又去磷酸基。这些蛋白质被激活,则可致使磷酸化级联反应链(phosphorylation cascade)中的下游蛋白质磷酸化。 在信号诱导下同GTP结合的蛋白质。 (3) 信号被传递到核,影响专一基因的表达。 2) 调控

细胞一般是受多种信号的刺激影响,细胞必须把一些分散的信号加以整合,才能产生特有的反应。细胞外信号可激活细胞中的多种蛋白质磷酸化级联反应链,这些级联反应链之间发生相互作用,最终影响基因的表达,引起了一定的生物效应。

13、概述受体酪氨酸激酶介导的信号通路的组成、特点及其主要功能。

RTK- Ras信号通路:配体→RTK→ adaptor ←GRF→Ras→Raf(MAPKKK)→MAPKK→MAPK→进入细胞核→其它激酶或基因调控蛋白(转录因子)的磷酸化修钸。

信号通路的组成:配体――生长因子;RTK—酪氨酸;接头蛋白(生长因子受体接头蛋白-2,GRB-2);GRF--

- 8 -

鸟苷酸释放因子;Ras—GTP结合蛋白;Raf――是丝氨酸/苏氨酸(Ser/Thr)蛋白激酶(称MAPKKK)。 主要功能:调节细胞的增殖与分化,促进细胞存活,以及细胞代谢过程中的调节与校正。

第六章:细胞质基质与细胞内膜系统

1、细胞质基质的结构组分及其在细胞生命活动中作用的理解。

基质的基本概念:用差速离心法分离细胞匀浆物组分,先后除去细胞核、线粒体、溶酶体、高尔基体和细胞质膜等细胞器或细胞结构后,存留在上清液中的主要是细胞质基质的成分。生物化学家多称之为胞质溶胶。 主要成分:中间代谢有关的数千种酶类、细胞质骨架结构。

主要特点:细胞质基质是一个高度有序的体系;通过弱键而相互作用处于动态平衡的结构体系,细胞骨架纤维贯穿其中。多数中间代谢反应及蛋白质合成与转运、某些蛋白质的修饰和选择性地降解等过程均在细胞质基质中进行。 其作用为:

1)完成各种中间代谢过程,如糖酵解过程、磷酸戊糖途径、糖醛酸途径等 2)蛋白质的分选与运输

3)与细胞质骨架相关的功能――维持细胞形态、细胞运动、胞内物质运输及能量传递等

4)蛋白质的修饰、蛋白质选择性的降解 ⑴蛋白质的修饰;⑵控制蛋白质的寿命;⑶降解变性和错误折叠的蛋白质;⑷帮助变性或错误折叠的蛋白质重新折叠,形成正确的分子构象。 2、内膜系统包括哪几部分?系统的依据是什么?

细胞内膜系统是指细胞内在结构、功能及发生上相关的由膜包绕形成的细胞器或细胞结构。

1) 它主要包括核膜、内质网和高尔基复合体三大部分,质膜、溶酶体和分泌泡均可看作是它的衍生物。线粒体和叶绿体不属于内膜系统。

2)依据:核膜、内质网和高尔基复合体结构和功能上是连续的,在形成上具有一定的序列相关性;内膜之间通过出芽和融合的方式进行交流。

3、比较粗面内质网和光面内质网的形态结构与功能。

ER是细胞内蛋白质与脂类合成的基地,几乎全部脂类和多种重要蛋白都是在内质网合成的。 形态结构:

rER多呈扁囊状,排列较为整齐,在其膜表面分布大量核糖体。功能:蛋白质合成;蛋白质的修饰与加工;新生肽的折叠与组装;脂类的合成。

sER常为分支管状,形成较为复杂的立体结构,在其膜的表面没有核糖体。功能:类固醇激素的合成(生殖腺内分泌细胞和肾上腺皮质);肝的解毒作用;肝细胞葡萄糖的释放(G-6P?G);储存钙离子:肌质网膜上的Ca2+-ATP酶将细胞质基质中Ca2+ 泵入肌质网腔中 4、细胞内蛋白质合成部位及其去向如何?

1)部位:细胞内蛋白质都是在核糖体上合成的,并都是起始于细胞质基质中“游离”核糖体。

2)去向:向细胞外分泌蛋白;膜的整合膜蛋白;内膜系统各种细胞器内的可溶性蛋白(需要隔离或修饰)。其它的多肽是在细胞质基质中“游离”核糖体上合成的:包括细胞质基质中的驻留蛋白、质膜外周蛋白、核输入蛋白、转运到线粒体、叶绿体和过氧物酶体的蛋白。

5、糙面内质网上合成哪几类蛋白质?它们在内质网上合成的生物学意义又是什么?

1)糙面内质网上合成的蛋白质主要是分泌性蛋白、膜蛋白及内质网、高尔基体和溶酶体中的蛋白。

2)生物学意义在于:多肽的糖基化及其折叠与装配发生在内质网中,而肽键上的信号序列决定多肽在细胞质中的合成部位,并最终决定成熟蛋白的去向。

6、指导分泌性蛋白在糙面内质网上合成需要哪些主要结构或因子?它们如何协同作用完成肽链在内质网上合成? 1)需要的结构或因子:胰腺细胞分泌的酶、浆细胞分泌的抗体、小肠杯状细胞分泌的粘蛋白、内分泌腺分泌的多肽类激素、胞外基质成分等。

2)协同作用:分泌性蛋白N端序列作为信号肽,指导分泌性蛋白到内质网膜上合成,在蛋白质合成结束之前信号肽被切除。只有N端信号序列而没有停止序列的多肽,合成后进入内质网腔中;停止转移序列位于多肽分子的中

- 9 -

部,合成后最终成为跨膜蛋白;含多个起始转移序列和多个停止转移序列的多肽会成为多次跨膜的膜蛋白。 7、结合高尔基体的结构特征,谈谈它是怎样行使其生理功能的? 1) 结构特征:

高尔基复合体由成摞的囊泡叠置而成。。囊泡的边缘部分连接有许多大小不等的表面光滑的小管网,其周围还存在有衣被小泡和无被小泡。一个成摞存在的囊泡又称为分散高尔基体,由5~8层囊泡组成, 构成了高尔基复合体的主体结构。

分散高尔基体在结构和生化成分上具有极性,和内质网临近的近核一侧,囊泡弯曲呈凸面, 称为形成面或顺面;在远核的一侧, 囊泡呈凹面,称为成熟面或反面。从顺面到反面,囊泡膜的厚度逐渐增大。 2) 功能:

(1) 形成和包装分泌物; (2) 蛋白质和脂类的糖基化; (3) 蛋白质的加工改造; (4) 细胞内的膜泡运输; (5) 膜的转化。

高尔基复合体在内膜系统中处于中介地位, 它在对细胞内合成物质的修饰和改造中具有重作用。许多重要大分子的运输和分泌都要通过高尔基复合体。

8、蛋白质的糖基化的基本类型、特征及生物学意义是什么?

蛋白质的糖基化在糖基转移酶(glycosyltransferase)作用下发生在ER腔面 1)基本类型: N-连接糖基化(Asn);O-氧连接糖基化(Ser/Thr) 2)特征: N-连接与O-连接的寡糖比较 类 型 特 征 N-连接 O-连接 1.合成部位 2.合成方式 3.与之结合的 4.最终长度 5.第一个糖残基 粗面内质网 来自同一个寡糖前体 天冬酰胺 至少5个糖残基 N—乙酰葡萄 粗面内质网或高尔基体 一个个单糖加上去 丝氨酸、苏氨酸、羟赖氨酸、羟脯氨酸 一般1~4个糖残基,但ABO血型抗原较长 N—乙酰半乳糖胺等 3)蛋白质糖基化的特点及其生物学意义

⑴糖蛋白寡糖链的合成与加工都没有模板,靠不同的酶在细胞不同间隔中经历复杂的加工过程才能完成。 ⑵糖基化的主要作用是蛋白质在成熟过程中折叠成正确构象和增加蛋白质的稳定性;多羟基糖侧链影响蛋白质的水溶性及蛋白质所带电荷的性质。对多数分选的蛋白质来说,糖基化并非作为蛋白质的分选信号。

⑶进化上的意义:寡糖链具有一定的刚性,从而限制了其它大分子接近细胞表面的膜蛋白,这就可能使真核细胞的祖先具有一个保护性的外被,同时又不象细胞壁那样限制细胞的形状与运动。 9. 糙面内质网和光面内质网在细胞的生命活动中各自承担了什么样的角色? 1) 糙面内质网: (1) 蛋白质的合成;

(2) 合成蛋白质的修饰与加工; (3) 膜的生成; (4) 物质的运输; (5) 贮积钙离子。 2) 光面内质网: (1) 脂类的合成; (2) 解毒作用; (3) 糖原代谢。

10. 糙面内质网上所进行的糖基化的机制如何?其添加的寡糖链又有什么特点?

- 10 -