2019年全国各地中考数学试题分类汇编:勾股定理 下载本文

内容发布更新时间 : 2024/11/20 6:37:40星期一 下面是文章的全部内容请认真阅读。

数学精品复习资料

(2013?湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3. (1)求DE的长;

(2)求△ADB的面积.

考点: 角平分线的性质;勾股定理 分析: (1)根据角平分线性质得出CD=DE,代入求出即可; (2)利用勾股定理求出AB的长,然后计算△ADB的面积. 解答: 解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°, ∴CD=DE, ∵CD=3, ∴DE=3; (2)在Rt△ABC中,由勾股定理得:AB=∴△ADB的面积为S△ADB=AB?DE=×10×3=15. 点评: 本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等. (2013?株洲)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F. (1)求证:△AOE≌△COF; (2)若∠EOD=30°,求CE的长.

==10, 考点: 菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;勾股定理. 分析: (1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE和△COF全等; (2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解. 解答: (1)证明:∵四边形ABCD是菱形, ∴AO=CO,AD∥BC, ∴∠OAE=∠OCF, 在△AOE和△COF中,∴△AOE≌△COF(ASA); (2)解:∵∠BAD=60°, ∴∠DAO=∠BAD=×60°=30°, ∵∠EOD=30°, ∴∠AOE=90°﹣30°=60°, ∴∠AEF=180°﹣∠BOD﹣∠AOE=180°﹣30°﹣60°=90°, ∵菱形的边长为2,∠DAO=30°, ∴OD=AD=×2=1, ∴AO=∴AE=CF=×==, =, , ∵菱形的边长为2,∠BAD=60°, ∴高EF=2×=, 在Rt△CEF中,CE===. 点评: 本题考查了菱形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,(2)求出△CEF是直角三角形是解题的关键,也是难点. (2013?巴中)若直角三角形的两直角边长为a、b,且满足

,则该

直角三角形的斜边长为 5 . 考点: 勾股定理;非负数的性质:绝对值;非负数的性质:算术平方根. 分析: 根据非负数的性质求得a、b的值,然后利用勾股定理即可求得该直角三角形的斜边长. 解答: 解:∵2, ∴a﹣6a+9=0,b﹣4=0, 解得a=3,b=4, ∵直角三角形的两直角边长为a、b, ∴该直角三角形的斜边长===5. 故答案是:5. (2013?达州)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有□ADCE中,DE最小的值是( ) A.2 B.3 C.4 D.5 答案:B

解析:由勾股定理,得AC=5,因为平行边形的对角线互相平分,

所以,DE一定经过AC中点O,当DE⊥BC时,DE最小,此时

OD=

3,所以最小值DE=3 2(2013?达州)如图,折叠矩形纸片ABCD,使B点落在AD上一点E

处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10。设AE=x,则x 的取值范围是 . 答案:2≤x≤6

解析:如图,设AG=y,则BG=6-y,在Rt△GAE中,

x2+y2=(6-y)2,即x?36?12y((0?y?),当y=0时,x取最大值为6;当y=时,x取最小值2,故有2≤x≤6

8383

2013?雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标 (0,2),(0,﹣2),(﹣3,0),(3,0) . 考点: 勾股定理;坐标与图形性质. 专题: 分类讨论. 分析: 需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标. 解答: 解:如图,①当点C位于y轴上时,设C(0,b). 则+=6,解得,b=2或b=﹣2, 此时C(0,2),或C(0,﹣2). 如图,②当点C位于x轴上时,设C(a,0).