考研资料高等数学公式(打印改进版).doc 下载本文

内容发布更新时间 : 2024/12/28 15:51:16星期一 下面是文章的全部内容请认真阅读。

考研

高等数学公式

导数公式:

(tanx)??secx(cotx)???csc2x(secx)??secx?tanx(cscx)???cscx?cotx(ax)??axlna(xx)??xx(lnx?1)(logax)??基本积分表:

2(arcsinx)??11xlna1?x21(arccosx)???1?x21(arctanx)??1?x21(arccotx)???1?x21(thx)??ch2?tanxdx??lncosx?C?cotxdx?lnsinx?C?secxdx?lnsecx?tanx?C?cscxdx?lncscx?cotx?Cdx1x?arctan?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx2?sec?cos2x?xdx?tanx?Cdx2?csc?sin2x?xdx??cotx?C?secx?tanxdx?secx?C?cscx?cotxdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2In??sinxdx??cosnxdx?00n?1In?2n???x2a22x?adx?x?a?ln(x?x2?a2)?C22x2a2222x?adx?x?a?lnx?x2?a2?C22x2a2x222a?xdx?a?x?arcsin?C22a22

三角函数的有理式积分:

2u1?u2x2dusinx?, cosx?, u?tg, dx?

1?u21?u221?u2考研

一些初等函数: 两个重要极限:

双曲正弦:shx?ex?e?x2?ex?e?x双曲余弦:chx2shxex?e?x双曲正切:thx?chx?ex?e?xarshx?ln(x?x2?1)archx??ln(x?x2?1)arthx?11?x2ln1?x三角函数公式:

·和差化积公式: sin??sin??2sin??????2cos2sin??sin??2cos??????2sin2cos??cos??2cos??????2cos2cos??cos???2sin??????2sin2

·和差角公式: sin(???)?sin?cos??cos?sin?cos(???)?cos?cos?msin?sin?tan(???)?tan??tan?1mtan??tan?cot(???)?cot??cot?m1cot??cot?

考研

limsinxx?0x?1 limx??(1?1x)x?e?2.718281828459045...

sin?cos??12?sin(???)?sin(???)?cos?sin??12?sin(???)?sin(???)?cos?cos??12?cos(???)?cos(???)?sin?sin???12?cos(???)?cos(???)?

2tanx1?tan2xsinx?2, cosx?21?tan2x1?tan2x22cosx?1tan222x1?tan2x, sinx?1?tan2xtan2x?sec2x?1, cot2x?csc2x?1|sinx|?|x|?|tanx|·积化和差公式:·万能公式、正切代换、其他公式:

·倍角公式:

sin2??2sin?cos?cos2??2cos2??1?1?2sin2??cos2??sin2?cot2??cot??12cot?2tan?tan2??1?tan2?2sin3??3sin??4sin3?cos3??4cos3??3cos?3tan??tan3?tan3??1?3tan2?

·半角公式:

sintan?2????1?cos??1?cos?           cos??2221?cos?1?cos?sin??1?cos?1?cos?sin???  cot????1?cos?sin?1?cos?21?cos?sin?1?cos?abc???2R ·余弦定理:c2?a2?b2?2abcosC sinAsinBsinC?2

·正弦定理:

·反三角函数性质:arcsinx??2?arccosx   arctanx??2?arccotx

高阶导数公式——莱布尼兹(Leibniz)公式:

(uv)(n)k(n?k)(k)??Cnuvk?0n?u(n)v?nu(n?1)v??n(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)uv?????uv???uv(n)2!k!

中值定理与导数应用:

拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)曲率:

当F(x)?x时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds?1?y?2dx,其中y??tg?平均曲率:K???.??:从M点到M?点,切线斜率的倾角变化量;?s:MM?弧长。?sy????d?M点的曲率:K?lim??.

23?s?0?sds(1?y?)直线:K?0;1半径为a的圆:K?.a考研

定积分的近似计算:

b矩形法:?f(x)?abb?a(y0?y1???yn?1)nb?a1[(y0?yn)?y1???yn?1]n2b?a[(y0?yn)?2(y2?y4???yn?2)?4(y1?y3???yn?1)]3n

梯形法:?f(x)?ab抛物线法:?f(x)?a

定积分应用相关公式:

功:W?F?s水压力:F?p?Amm引力:F?k122,k为引力系数

rb1函数的平均值:y?f(x)dx?b?aa12均方根:f(t)dt?b?aa

空间解析几何和向量代数:

b空间2点的距离:d?M1M2?(x2?x1)2?(y2?y1)2?(z2?z1)2向量在轴上的投影:PrjuAB?AB?cos?,?是AB与u轴的夹角。????Prju(a1?a2)?Prja1?Prja2????a?b?a?bcos??axbx?ayby?azbz,是一个数量,两向量之间的夹角:cos??i???c?a?b?axbxjaybyaxbx?ayby?azbzax?ay?az?bx?by?bz222222k??????az,c?a?bsin?.例:线速度:v?w?r.bzaybycyaz???bz?a?b?ccos?,?为锐角时, czax??????向量的混合积:[abc]?(a?b)?c?bxcx代表平行六面体的体积。考研