内容发布更新时间 : 2025/1/8 2:38:30星期一 下面是文章的全部内容请认真阅读。
求二次函数解析式的四种基本方法
二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:
1、一般式:y=ax+bx+c (a≠0)。
2、顶点式:y=a(x-h)+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。
3、交点式:y=a(x-x1)(x-x2) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。 4.对称点式: y=a(x-x1)(x-x2)+m (a≠0)
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。
4.若已知二次函数图象上的两个对称点(x1、m)(x2、m),则设成: y=a(x-x1)(x-x2)+m (a≠0),再将另一个坐标代入式子中,求出a的值,再化成一般形式即可。
探究问题,典例指津:
例1、已知二次函数的图象经过点(?1,?5),(0,?4)和(1,1).求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax+bx+c (a≠0)。 解:设这个二次函数的解析式为y=ax+bx+c (a≠0)
2222?a?b?c??5?a?2??依题意得:?c??4 解这个方程组得:?b?3
?a?b?c?1?c??4??∴这个二次函数的解析式为y=2x+3x-4。
例2、已知抛物线y?ax2?bx?c的顶点坐标为(4,?1),与y轴交于点(0,3),求这条抛物线的解析式。
2分析:此题给出抛物线y?ax?bx?c的顶点坐标为(4,?1),最好抛开题目给出的
2y?ax2?bx?c,重新设顶点式y=a(x-h)2+k (a≠0),其中点(h,k)为顶点。
解:依题意,设这个二次函数的解析式为y=a(x-4)-1 (a≠0) 又抛物线与y轴交于点(0,3)。
2 1 咨询热线:2306086
1 41122∴这个二次函数的解析式为y=(x-4)-1,即y=x-2x+3。
44∴a(0-4)-1=3 ∴a=
2例3、如图,已知两点A(-8,0),(2,0),以AB为直径的半圆与y轴正半轴交于点C(0、4)。
求经过A、B、C三点的抛物线的解析式。
分析:A、B两点实际上是抛物线与x轴的交点,所以可设交点式y=a(x-x1)(x-x) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。2
解:依题意,设这个二次函数的解析式为y=a(x+8)(x-2)
例4、 已知函数y=x2+kx-3(k>0),图象的顶点为C并与x轴相交于两点A、B且AB=4 (1)求实数k的值;(2)若P为上述抛物线上的一个动点(除点C外),求使S△ABC=S△ABP成立的点P的坐标。
变式练习,创新发现
1、已知抛物线过A(-2,0)、B(1,0)、C(0,2)三点。求这条抛物线的解析式。)
2、已知抛物线的顶点坐标为(2,1),与y轴交于点(0,5),求这条抛物线的解析式。
2、已知二次函数y
3、已知二次函数图象的对称轴是x=-3,且函数有最大值为2,图象与x轴的一个交点是(-1,0),求这个二次函数的解析式。
24、已知二次函数y?ax?bx?c的图象如图所示,则这个二次函数的关系式是________。
?ax2?bx?c的图象的顶点为(1,?2),且经过点(-2,0),求该二次函数的函数关系式。
95、已知:抛物线在x轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式
26、已知二次函数y?(m?1)x?2mx?(3m?2)(m≠1)的最大值是零,求此函数的解析式。
7. 已知某抛物线是由抛物线y=x-x-2经过平移而得到的,且该抛物线经过点A(1,1),B(2,4),求其函数关系式。
9、已知四点A(1,2),B(0,6),C(-2,20),D(-1,12),试问是否存在一个二次函数,使它的图象同时经过这四个点?如果存在,请求出它的关系式;如果不存在,说明理由。
5、
2
2 咨询热线:2306086