内容发布更新时间 : 2024/11/18 18:27:33星期一 下面是文章的全部内容请认真阅读。
差异源 SS df MS 组间 307 组内 216.4 总计 14 — (1)将方差分析表中的空格数值补齐。 F — — P值 0.00031 — — F 临界值 3.88529 — — .) (2)分析三个厂商生产的电池平均寿命之间有无显著差异(??005
泉州师院2010—2011学年度第二学期本科
2008级《统计学》期末复习试卷B
一、判断题(对的打“√”;错的打“×”,并在原题上改正。每小题2分,共10分)
1. 统计研究的客体是客观现象的数量方面。( )
2.众数是总体中出现最多的次数。( ) 3.相关系数为零,说明两现象之间毫无关系。( ) 4.在假设检验中,当原假设错误时未拒绝原假设,所犯的错误为取真错误。( )
5.方差分析是为了推断多个总体的方差是否相等而进行的假设检验。( )
二、单项选择题 (每小题1分,共10分)
1.用部分数据去估计总体数据的理论和方法,属于( D )
A. 理论统计学的内容 B.应用统计学的内容 C.描述统计学的内容 D.推断统计学的内容
2.某电视台就“你最喜欢的电视节目是哪个”随机询问了200名观众,为了度量调查数据的集中趋势,需要运用的指标是(D )
A.算术平均数 B.几何平均数 C.中位数 D.众数
3.某年某地区甲、乙两类职工的月平均收入分别为1060元和3350元,标准差分别为230元和680元,则职工平均收入的离散程度( A )
5
A.甲类较大 B.乙类较大 C.在两类之间缺乏可比性 D.两类相同 4.下面哪个不属于度量现象离中趋势的目的( B ) A. 描述总体内部的差异程度 B. 衡量总体现象的一般水平
C. 衡量和比较均值指标的代表性高低 D. 为抽选样本单位提供依据
5.在某地区,人们购买个人医疗保险的百分数是( A )
A.总体参数 B.样本参数 C.总体统计量 D.样本统计量 6.下列关于集中趋势的测度中,易受极端值影响的是(A )
A.均值 B.中位数 C.众数 D.几何平均数
7.调查50个房地产公司,房屋销售面积与广告费用之间的相关关系为0.76,这说明(A )
A.二者之间有较强的正相关关系
B.平均看来,销售面积的76%归因于其广告费用
C.如要多销售1万平方米的房屋,则要增加广告费用7600元 D.如果广告费用增加1万元,可以多销售7600平方米的房屋
8.将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式,称为( C )。
A.简单随机抽样 B.分层抽样 C.整群抽样 D.系统抽样 9. 统计推断中,其他条件相同的情况下,下类说法错误的是(C )
A.置信度越大,推断的精确度越低 B.样本量越大,推断的误差范围越小
C.显著性水平越大,推断结论的把握程度越大 D.犯第一类错误的可能性越大,犯第二类错误的可能性越小 10.一定置信度下的抽样极限误差是指用样本指标估计总体指标时,产生的抽样误差的( C )
A.实际最大值 B.实际最小值 C.可能范围 D.实际范围 三、多项选择题 (每小题2分,共10分)
1.统计的基本涵义有三个理解( )
A.统计工作 B.统计资料 C.统计学 D.统计数据 2.下列属于正相关的现象是( )
A.家庭收入越多,其消费支出也越多
B.某产品产量随工人劳动生产率的提高而增加 C.流通费用率随商品销售额的增加而减少
D.生产单位产品所耗工时随劳动生产率的提高而减少
6
E.产品产量随生产用固定资产价值的减少而减少 3.下面属于非全面调查的有( )
A.普查 B.重点调查 C.抽样调查 D.典型调查 4.在组距数列中,组中值是( )
A.上限和下限之间的中点数值 B.用来代表各组标志值的平均水平 C.在开放式分组中无法确定
D.在开放式分组中,可以参照相邻组的组距来确定 E.就是组平均数
5.样本单位数取决于下列因素( )
A. 被研究总体的标志变异程度 B. 抽样极限误差 C. 抽样调查组织方式和抽样方法 D. 研究的代价 四、填空题(每空1分,共10分) 1. 设一个总体,含有4个元素,即总体单位数N=4。4 个个体分别为X1=1,X2=2,X3=3,X4=4 。总体均值为2.5,总体的标准差为1.25,从总体中抽取n=2的样本,在重复抽样的条件下,样本均值的数学期望为_______,样本均值的标准差为_______
2. 统计表的总标题位于表的______,统计图的总标题位于图的______
3. 小概率原理即小概率事件,在一次观测中几乎不至于发生的原理。通常把概率不超过_____或_____的事件称为小概率事件。 4. 如果某个数值的标准分数为 -1.5,表明该数值低于平均数1.5倍的_____ 5. 当一组数据对称分布时,根据经验法则,约有_________数据在平均数±1个标准差范围内、约有_________数据在平均数±2个标准差范围内、约有_________数据在平均数±3个标准差范围内。 五、简答题 (每小题5分,共20分)
1. 解释集中趋势和离中趋势。说明这两种度量方法各包括哪些指标(各列举四个)。
2、解释总体与样本、参数和统计量的含义。
3.参数估计中,当总体为正态分布且?2已知的情况下,总体均值?所在1-α置信水平的置信区间为:x?Z?2?n。请分别解释x?Z?2?n、x?Z?2?n、α、
1-α、Z?2、Z?2?n的含义。
4. 解释方差分析的基本思想。
六、计算题(每小题10分,共40分)
1、下表为某班统计学考试的情况,根据该表回答问题: 成绩 60分以下 学生数 1 比重(%) 2 7
60-70 70-80 80-90 90-100 合计
14 20 11 4 50 28 40 22 8 100 60分以下这组的组中值是______,60-70分这组的组中值是______;众数所在的组是______;
80-90这组是的上限是______,下限是______;
某同学考了70分,应该被列入______这组,而不是60-70这组,这是根据______原则。
该班同学的平均分为______,其中80分以下的有______人。80分以上的累计所占的比重______ 2.某快餐店对顾客的平均花费进行抽样调查,随机抽取了49名顾客构成一个简单随机样本,调查结果为:样本平均花费为12.6元,标准差为2.8元。试以95%的置信度估计:
(1)该快餐店顾客的总体平均花费数额的置信区间;
(2)假如该快餐店一天的顾客有2000人,根据(1)中的计算结果求这天营业额的置信区间。
3.糖厂用自动打包机打包,每包标准重量是100千克。每天开工后需要检验一次打包机工作是否正常。某日开工后随机抽取9包,测得平均重量为99.94千克,标准差为1.18。已知包重服从正态分布,试检验该日打包机工作是否正常? (1)给出上题的原假设和备择假设;
(2)构造适当的检验统计量,并进行假设检验,分析可能会犯的错误(取α=0.05)。
8