内容发布更新时间 : 2024/11/20 12:42:06星期一 下面是文章的全部内容请认真阅读。
4.5 试推导图F1-8所示变电介质电容式位移传感器的特性方程C=f(x)。设真空的介电系数为ε0, ε2>ε1 ,以及极板宽度为W。其他参数如图F1-8所示。
4.6 在上题中,设δ=d=1mm,极板为正方形(边长50mm)。 ε1 =1,ε2=4试在x=0到50mm范围内,输出磁位移传感器的特性曲线,并给以适当说明。 4.7 简述电容式传感器用差分脉冲调宽电路的工作原理及特点。 答:工作原理:假设传感器处于初始状态,即
且A点为高电平,即Ua=U; 而B点为低电平,即Ub=0差分脉冲调宽型电路的特点就在于它的线性变换特性。
5.1 磁电式传感器与电感式传感器有哪些不同?磁电式传感器主要用于测量哪些物理参数? 答:磁电式传感器是通过磁电作用将被测量转换为电信号的一种传感器。
电感式传感器是利用线圈自感或互感的变化来测量的一种装置。
磁电式传感器具有频响宽、动态范围大的特点。而电感式传感器存在交流零位信号,不宜于高频动态信号检测;其响应速度较慢,也不宜做快速动态测量。
磁电式传感器测量的物理参数有:磁场、电流、位移、压力、振动、转速。
5.2 霍尔元件能够测量哪些物理参数?霍尔元件的不等位电动势的概念是什么?温度补偿的方法有哪几种?
答:霍尔组件可测量磁场、电流、位移、压力、振动、转速等。
霍尔组件的不等位电势是霍尔组件在额定控制电流作用下,在无外加磁场时,两输出电极之间的空载电势,可用输出的电压表示。 温度补偿方法: a分流电阻法:
适用于恒流源供给控制电流的情况。 b电桥补偿法
5.3 简述霍尔效应及构成以及霍尔传感器可能的应用场合。
答:一块长为l、宽为d的半导体薄片置于磁感应强度为磁场(磁场方向垂直于薄片)中,当有电流I流过时,在垂直于电流和磁场的方向上将产生电动势Uh。这种现象称为霍尔效应。霍尔组件多用N型半导体材料,且比较薄。
霍尔式传感器转换效率较低,受温度影响大,但其结构简单、体积小、坚固、频率响应宽、动态范围(输出电势变化)大、无触点,使用寿命长、可靠性高、易微型化和集成电路化,因此在测量技术、自动控制、电磁测量、计算装置以及现代军事技术等领域中得到广泛应用。
6.1 什么是压电效应?压电效应有哪些种类?压电传感器的结构和应用特点是什么?能否用压电传感器测量静态压力?
答:某些电介质在沿一定的方向受到外力的作用变形时,由于内部电极化现象同时在两个表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。晶体受力所产生的电荷量与外力的大小成正比。这种现象称为正压电
效应。反之,如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应。
压电材料有:石英晶体、一系列单晶硅、多晶陶瓷、有机高分子聚合材料
因此需要测量电路具有无限大的输入阻抗。但实际上这是不可能的,所以压电传感器不宜作静态测量,只能在其上加交变力,电荷才能不断得到补充,并给测量电路一定的电流。故压电传感器只能作动态测量。
6.2 为什么压电传感器通常都用来测量动态或瞬态参量?
答:如作用在压电组件上的力是静态力,则电荷会泄露,无法进行测量。所以压电传感器通常都用来测量动态或瞬态参量。
6.3 试比较石英晶体和压电陶瓷的压电效应。
答:石英晶体整个晶体是中性的,受外力作用而变形时,没有体积变形压电效应,但它具有良好的厚度变形和长度变形压电效应。压电陶瓷是一种多晶铁电体。原始的压电陶瓷材料并不具有压电性,必须在一定温度下做极化处理,才能使其呈现出压电性。所谓极化,就是以