内容发布更新时间 : 2025/10/31 22:08:36星期一 下面是文章的全部内容请认真阅读。
卡尔曼滤波简介与算法实现代码
2007-01-13
最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。
现设线性时变系统的离散状态防城和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中
X(k)和Y(k)分别是k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为k时刻动态噪声 T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声
则卡尔曼滤波的算法流程为: 预估计X(k)^= F(k,k-1)·X(k-1) 计算预估计协方差矩阵 C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 更新估计
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤
其c语言实现代码如下:
#include \ #include \
int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k;
double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b;
e=malloc(m*m*sizeof(double)); l=m;
    if (l     a=malloc(l*l*sizeof(double));     b=malloc(l*l*sizeof(double));     for (i=0; i<=n-1; i++)       for (j=0; j<=n-1; j++)         { ii=i*l+j; a[ii]=0.0;            for (kk=0; kk<=n-1; kk++)              a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];         }      for (i=0; i<=n-1; i++)       for (j=0; j<=n-1; j++)         { ii=i*n+j; p[ii]=q[ii];            for (kk=0; kk<=n-1; kk++)              p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];         }      for (ii=2; ii<=k; ii++)       { for (i=0; i<=n-1; i++)         for (j=0; j<=m-1; j++)           { jj=i*l+j; a[jj]=0.0;              for (kk=0; kk<=n-1; kk++)                a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];           }          for (i=0; i<=m-1; i++)         for (j=0; j<=m-1; j++)           { jj=i*m+j; e[jj]=r[jj];              for (kk=0; kk<=n-1; kk++)                e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];           }          js=rinv(e,m);         if (js==0)             { free(e); free(a); free(b); return(js);}         for (i=0; i<=n-1; i++)         for (j=0; j<=m-1; j++)           { jj=i*m+j; g[jj]=0.0;              for (kk=0; kk<=m-1; kk++)                g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];           }          for (i=0; i<=n-1; i++)            { jj=(ii-1)*n+i; x[jj]=0.0;             for (j=0; j<=n-1; j++)                x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];           }          for (i=0; i<=m-1; i++)            { jj=i*l; b[jj]=y[(ii-1)*m+i];             for (j=0; j<=n-1; j++)                b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];           }          for (i=0; i<=n-1; i++)           { jj=(ii-1)*n+i;              for (j=0; j<=m-1; j++)                x[jj]=x[jj]+g[i*m+j]*b[j*l];           }         if (ii           { for (i=0; i<=n-1; i++)             for (j=0; j<=n-1; j++)               { jj=i*l+j; a[jj]=0.0;                  for (kk=0; kk<=m-1; kk++)                    a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];                 if (i==j) a[jj]=1.0+a[jj];               }              for (i=0; i<=n-1; i++)             for (j=0; j<=n-1; j++)               { jj=i*l+j; b[jj]=0.0;                  for (kk=0; kk<=n-1; kk++)                    b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];               }              for (i=0; i<=n-1; i++)             for (j=0; j<=n-1; j++)               { jj=i*l+j; a[jj]=0.0;                  for (kk=0; kk<=n-1; kk++)                    a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];               }              for (i=0; i<=n-1; i++)             for (j=0; j<=n-1; j++)               { jj=i*n+j; p[jj]=q[jj];                  for (kk=0; kk<=n-1; kk++)                    p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];               }           }       }      free(e); free(a); free(b);     return(js);   }   C++实现代码如下:  ============================kalman.h================================   // kalman.h: interface for the kalman class. //  //////////////////////////////////////////////////////////////////////   #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_) #define  AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_   #if _MSC_VER > 1000 #pragma once  #endif // _MSC_VER > 1000   #include  class kalman   {  public:   void init_kalman(int x,int xv,int y,int yv);  CvKalman* cvkalman;  CvMat* state;    CvMat* process_noise;  CvMat* measurement;  const CvMat* prediction;   CvPoint2D32f get_predict(float x, float y);  kalman(int x=0,int xv=0,int y=0,int yv=0);  //virtual ~kalman();   };   #endif  // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)    ============================kalman.cpp================================   #include \#include  /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */    CvRandState rng; const double T = 0.1;  kalman::kalman(int x,int xv,int y,int yv) {           cvkalman = cvCreateKalman( 4, 4, 0 );      state = cvCreateMat( 4, 1, CV_32FC1 );      process_noise = cvCreateMat( 4, 1, CV_32FC1 );     measurement = cvCreateMat( 4, 1, CV_32FC1 );     int code = -1;           /* create matrix data */      const float A[] = {     1, T, 0, 0,    0, 1, 0, 0,    0, 0, 1, T,    0, 0, 0, 1   };             const float H[] = {      1, 0, 0, 0,     0, 0, 0, 0,    0, 0, 1, 0,    0, 0, 0, 0   };               const float P[] = {      pow(320,2), pow(320,2)/T, 0, 0,     pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,    0, 0, pow(240,2), pow(240,2)/T,     0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)     };        const float Q[] = {     pow(T,3)/3, pow(T,2)/2, 0, 0,    pow(T,2)/2, T, 0, 0,     0, 0, pow(T,3)/3, pow(T,2)/2,    0, 0, pow(T,2)/2, T    };           const float R[] = {    1, 0, 0, 0,    0, 0, 0, 0,    0, 0, 1, 0,    0, 0, 0, 0    };               cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );       cvZero( measurement );           cvRandSetRange( &rng, 0, 0.1, 0 );     rng.disttype = CV_RAND_NORMAL;       cvRand( &rng, state );