传染病的传播及控制分析数学建模 下载本文

内容发布更新时间 : 2025/1/1 20:06:52星期一 下面是文章的全部内容请认真阅读。

传染病的传播及控制分析

摘要

为进一步探索传染病的传播和流行规律及其与防治措施的关系,本文通过建

立传染病的传播模型,了解传染病的扩散传播规律,为预测和控制传染病提供可靠、足够的信息。

本文针对该问题建立了SEIR微分方程模型,对病毒的传播过程进行了模拟分析,得出了患者人数随时间的变化规律。我们将人群分为五类:患者、疑似患者、正常人、治愈者和死亡者。前三者作为传染系统。我们认为治愈者获得终身免疫,和死亡者一样移出传染系统,即后两者合并为移出者。

本模型将病毒的传染与扩散分为两个部分:控制前和控制后。在控制前,相当于没有对病毒扩散做任何限制,患者数量短时间内大量增长,并以死亡的形式退出传染系统;在控制后,由于对潜伏者进行了一定强度的隔离,与此同时,确诊患者得到有效的治疗,使得传染源数量减少,患者平均每天接触的人数减少,治愈者增多,并作为主要的移出者移出传染系统。

在模型建立的基础上,通过Matlab软件拟合出患者人数随时间变化的曲线关系图,得到如下结果:控制前,患者人数呈指数增长趋势;控制后,在p=0.4时,患者人数大致在7天时到达最大值,在25天时基本没有患者;在p=0.3时,患者人数大概在第8天到达最大值186383,大概在28天之后基本没有患者;在p=0.6时,大概在第5天患者人数到达峰值为47391,在21天时基本没有患者。综上分析,对隔离强度的处理是控制传染病的一个重要手段。针对所得结果,对H7N9的传播控制时提出了医院、政府和个人应有的一些控制措施。

关键词:隔离强度 潜伏期 SEIR模型

一、问题重述:

2013年中,H7N9是网上的热点,尤其是其高致死率,引起了人们的恐慌,最近又有研究显示,H7N9有变异的可能。假设已知有一种未知的现病毒[1]潜伏期为a1a2天,患病者的治愈时间为a3天,假设该病毒可以通过人与人之间的直接接触进行传播,患者每天接触的人数为r,因接触被感染的概率为?(?为感染率)。为了控制疾病的传播与扩散,将人群分成五类,患者、疑似患者、治愈者、死亡者、正常人。潜伏期内的患者被隔离的强度为p(为潜伏期内患者被隔离的百分数)。

在合理的假设下建立该病毒扩散与传播的控制模型,利用所给数据值生成患者人数随时间变化的曲线,增强或者减弱疑似患者的隔离强度,比较患者人数发生的变化,并分析结果的合理性。最后结合该模型的数据对控制H7N9的传播做出一些科学的建议。

二、问题假设:

1、假设单位时间内感染病毒的人数与现有的感染者成比例; 2、假设单位时间内治愈人数与现有感染者成比例; 3、假设单位时间内死亡人数与现有的感染者成比例;

4、假设患者治愈恢复后不会再被感染同种病毒,有很强的免疫能力,即被移除出此传染系统;

5、假设正常人被传染后,进入一段时间的潜伏期,处于潜伏期的人群不会表现症状,不可传染健康人,不具有传染性;

6、假设患者入院即表示患者被隔离治疗,被视为无法跟别人接触,故不会传染健康人;

7、假设实际治愈周期过后,如果患者没有治愈,则认为患者死亡,即实际治愈周期过后,患者都被移出此感染系统;

8、假设考察地区内疾病传播期间忽略人口的出生,死亡,流动等种群动力因素对总人数的影响。即:总人口数不变,记为N;

三、符号说明:

符号 S(t) E(t) Q(t) I(t) R(t) β1 β2 a3 r

解释说明

t时刻正常人(易受感染)人数 t时刻疑似患者的人数 t时刻处于潜伏期的人数 t时刻确诊患者的人数

t时刻退出传染系统的人数(包括治愈者和死亡者) 潜伏期的人数中转化为确诊患病的人数占潜伏期人数的比例

每日退出传染系统的人数比例 确诊患者的治愈时间 患者的人均日接触人数 因接触被感染的概率 潜伏期内的患者被隔离的强度

?

p

四、问题分析:

根据题意,这是一个传染性病毒随着时间演变的过程,需要研究传染病在传播过程中各类人群的人数变化,特别是通过研究患者和疑似患者的人数变化,预测传染病的传染的高峰期和持续时间长度,从而我们可以采取相应隔离措施达到控制传染病传播的效果。

我们要分析、预测、研究它就得建立动态模型,查阅相关资料可知,关于传染病的模型已有不少,其中以微分方程模型最具代表性,因题目中把人群分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,所以我们采用微分方程中的SIER模型,将死亡者和治愈者都归于系统移出者统称为恢复人群。在此基础上,我们找出单位时间内这五类人群人数的变化来建立微分方程,得出模型。再利用matlab编程画出图形,改变其隔离强度后重新作图进行比较,对结果进行分析,并利用此模型对控制H7N9的传播做出建议。

五、模型的建立和求解:

5.1传染病模型的准备

不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,因此我们不可能从医学的角度一一分析各种传染病的传播,而只是按一般的传播机理建立模型。

查阅相关资料可知,目前关于传染病的模型已有不少,其中以微分方程建立的模型比较具有代表性,模型复杂程度有区别,故适合的情形也不同,包括I模型、SI模型、SIR模型、SEIR模型等[2]。