扫描电镜技术及其在材料科学中的应用 下载本文

内容发布更新时间 : 2024/11/16 1:48:37星期一 下面是文章的全部内容请认真阅读。

图6 热轧态Mg侧剥离面SEM形貌

热轧包铝镁板(轧制温度400℃、压下率45%)Mg侧剥离面SEM形貌如图6所示。由图可清楚的观察到在剥离面上存在大量撕裂棱、撕裂平台,在撕裂平台上还存在许多放射状小条纹和韧窝。 5.1.2观察材料第二相

析出相

破碎的Mg17Al12

图7 AZ31镁合金SEM高倍显微组织

从图7中可以清楚的观察到破碎后的第二相Mg17Al12尺寸约为4μm,在“大块”Mg17Al12附近有许多弥散分布的的小颗粒,尺寸在0.5μm左右,此为热轧后冷却过程中由α-Mg基过饱和固溶体中析出的二次Mg17Al12相,呈这种形态分布的细小第二相Mg17Al12能有效的阻碍位错运动,提高材料强度,起到弥散强化的作用,而不会明显降低AZ31镁合金的塑性。 5.1.3观察材料界面

图8 Mg/Al 轧制界面线扫描[1]

图8是Mg/Al轧制复合界面的线扫描图像,从图中我们可以看到,穿过Mg和Al的界面进行线扫描,可以得到,在Al的一侧,Mg含量低,在Mg一侧,Al几乎为零;但在界面处,Mg和Al各大约占一半,说明在界面处发生了扩散,形成了Mg和Al的扩散层。

5.1.4观察材料断口

(a)铸态 (b)热轧态

图9 AZ31镁合金拉伸断口形貌

AZ31镁合金铸态试样拉伸断口SEM扫描形貌如图所示。从图9(a)可以观察到明显的解理断裂平台,在最后撕裂处也存在少量韧窝,基本上属于准解理断裂,塑性较差。这是因为铸态AZ31镁合金晶界处存在粗大的脆性第2相Mg17Al12,在拉伸变形过程中容易破碎形成裂纹源。热轧态AZ31镁合金拉伸试样断口处有明显的

缩颈现象,其宏观断口SEM扫描形貌如图9(b)所示,呈现出以韧窝为主的延性断口形貌特征,韧窝大小为5~20μm。

5.2 镀层表面形貌分析和深度检测

有时为利于机械加工,在工序之间也进行镀膜处理由于镀膜的表面形貌和深度对使用性能具有重要影响,所以常常被作为研究的技术指标镀膜的深度很薄,由于光学显微镜放大倍数的局限性,使用金相方法检测镀膜的深度和镀层与母材的结合情况比较困难,而扫描电镜却可以很容易完成使用扫描电镜观察分析镀层表面形貌是方便、易行的最有效的方法,样品无需制备,只需直接放入样品室内即可放大观察。 5.3微区化学成分分析

在样品的处理过程中,有时需要提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析为此,相继出现了扫描电子显微镜—电子探针多种分析功能的组合型仪器。扫描电子显微镜如配有X射线能谱(EDS)和X射线波谱成分分析等电子探针附件,可分析样品微区的化学成分等信息材料。内部的夹杂物等,由于它们的体积细小,因此,无法采用常规的化学方法进行定位鉴定扫描电镜可以提供重要的线索和数据工程材料失效分析常用的电子探针的基本工作方式为:

(1)对样品表面选定微区作定点的全谱扫描定性;

(2)电子束沿样品表面选定的直线轨迹作所含元素浓度的线扫描分析; (3)电子束在样品表面作面扫描,以特定元素的 射线讯号调制阴极射线管荧光屏亮度,给出该元素浓度分布的扫描图像。

一般而言,常用的X射线能谱仪能检测到的成分含量下限为0.1%(质量分数)可以应用在判定合金中析出相或固溶体的组成、测定金属及合金中各种元素的偏析、研究电镀等工艺过程形成的异种金属的结合状态、研究摩擦和磨损过程中的金属转移现象以及失效件表面的析出物或腐蚀产物的鉴别等方面。 5.4显微组织及超微尺寸材料的研究

钢铁材料中诸如回火托氏体、下贝氏体等显微组织非常细密,用光学显微镜难以观察组织的细节和特征在进行材料、工艺试验时,如果出现这类组织,可以将制备好的金相试样深腐蚀后,在扫描电镜中鉴别下贝氏体与高碳马氏体组织在光学显微镜下的形态均呈针状,且前者的性能优于后者。但由于光学显微镜的分辨率较低,无法显示其组织细节,故不能区分电子显微镜却可以通过对针状组织细节的观察实现对这种相似组织的鉴别在电子显微镜下(SEM),可清楚地观察到针叶下贝氏体是有铁素体和其内呈方向分布的碳化物组成。 6.现代扫描电镜的发展

近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材

料科学的发展特别是半导体工业的需求,要尽量保持试样的原始表面,在不做任何处理的条件下进行分析。早在20世纪80年代中期,便有厂家根据新材料(主要是半导体材料)发展的需要,提出了导电性不好的材料不经过任何处理也能够进行观察分析的设想,到90年代初期,这一设想就已有了实验雏形,90年代末期,已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压,最近几年又出现了模拟环境工作方式的扫描电镜,这就是现代扫描电镜领域出现的新名词“环扫”,即环境扫描电镜。 6.1低电压扫描电镜

在扫描电镜中,低电压是指电子束流加速电压在1kV左右。此时,对未经导电处理的非导体试样其充电效应可以减小,电子对试样的辐照损伤小,且二次电子的信息产额高,成像信息对表面状态更加敏感,边缘效应更加显著,能够适应半导体和非导体分析工作的需要。但随着加速电压的降低,物镜的球像差效应增加,使得图像的分辨率不能达到很高,这就是低电压工作模式的局限性。 6.2低真空扫描电镜

低真空为是为了解决不导电试样分析的另一种工作模式。其关键技术是采用了一级压差光栏,实现了两级真空。发射电子束的电子室和使电子束聚焦的镜筒必须置于清洁的高真空状态,一般用1个机械泵和扩散泵来满足之。而样品室不一定要太高的真空,可用另一个机械泵来实现样品室的低真空状态。当聚焦的电子束进入低真空样品室后,与残余的空气分子碰撞并将其电离,这些离化带有正电的气体分子在一个附加电场的作用下向充电的样品表面运动,与样品表面充电的电子中和,这样就消除了非导体表面的充电现象,从而实现了对非导体样品自然状态的直接观察,在半导体、冶金、化工、矿产、陶瓷、生物等材料的分析工作方面有着比较突出的作用。 6.3环境扫描电镜(ESEM)

上述低真空扫描电镜样品室最高低真空压力为400Pa,现在有厂家使用专利技术,可使样品室的低真空压力达到2600Pa,也就是样品室可容纳分子更多,在这种状态下,可配置水瓶向样品室输送水蒸气或输送混合气体,若跟高温或低温样品台联合使用则可模拟样品的周围环境,结合扫描电镜观察,可得到环境条件下试样的变化情况。环扫实现较高的低真空,其核心技术就是采用两级压差光栅和气体二次电子探测器,还有一些其它相关技术也相继得到完善。它是使用1个分子泵和2个机械泵,2个压差(压力限制)光栅将主体分成3个抽气区,镜筒处于高真空,样品周围为环境状态,样品室和镜筒之间存在一个缓冲过渡状态。使用时,高真空、低真空和环境3个模式可根据情况任意选择,并且在3种情况下都配有二次电子探测器,都能达到3. 5nm的二次电子图像分辨率。ESEM的特点是:

(1)非导电材料不需喷镀导电膜,可直接观察,分析简便迅速,不破坏原始形貌;

(2)可保证样品在100 %湿度下观察,即可进行含油含水样品的观察,能够观察

液体在样品表面的蒸发和凝结以及化学腐蚀行为;

(3)可进行样品热模拟及力学模拟的动态化实验研究,也可以研究微注入液体与样品的相互作用等。因为这些过程中有大量气体释放,只能在环扫状态下进行观察。

环境扫描电镜技术拓展了电子显微学的研究领域,是扫描电子显微镜领域的一次重大技术革命,是研究材料热模拟、力学模拟、氧化腐蚀等过程的有力工具,受到了国内广大科研工作者的广泛关注,具有广阔的应用前景。 7.结论

扫描电子显微镜在材料的分析和研究方面应用十分广泛,主要应用于材料断口分析、微区成分分析、各种镀膜表面形貌分析、层厚测量和显微组织形貌及纳米材料分析等。随着材料科学和高科技的迅速发展,这样也迫使检测技术水平不断提高。目前,高温样品台、动态拉伸台、能谱仪和扫描电镜的组合,这样扫描电镜在得到较好的试样形貌像的前提下,同时得到成分信息和晶体学的信息,使得扫描电镜必将在材料工艺研究和品种开发等方面发挥更大的作用。

参考文献:

[1] 朱琳.扫描电子显微镜及其在材料科学中的应用[J].吉林化工学院学报,2007,(2):81-84.

[2] 吴立新,陈方玉.现代扫描电镜的发展及其在材料科学中的应用[J].武钢技术,2005,43(6):36-40.

[3] 刘维.电子显微镜的原理和应用[J].现代仪器使用与维修,1996,(1):9-12. [4] 刘剑霜,谢锋 等.扫描电子显微镜[J].上海计量测试,2003,(6):37-39. [5] 干蜀毅.常规扫描电子显微镜的特点与发展[J].分析仪器,2000,(1):34-36. [6] 李占双,景晓燕.近代分析测试技术[M]. 哈尔滨:哈尔滨工程大学出版社 ,2005,158 - 192.