内容发布更新时间 : 2025/1/11 17:17:01星期一 下面是文章的全部内容请认真阅读。
∵x?4??2y2020,∴
x2?y2?2x0y?2?0, y0令y?0,x2?y2?2?0,解得x??2,
∴以MN为直径的圆过定点F(?2,0). ………………16分 【考点】直线与椭圆位置关系
19.(本题满分16分)
数列an?,bn?,cn?满足:bn?an?2an?1,cn?an?1?2an?2?2,n?N*. (1)若数列an?是等差数列,求证:数列bn?是等差数列;
(2)若数列bn?,cn?都是等差数列,求证:数列an?从第二项起为等差数列; (3)若数列bn?是等差数列,试判断当b1?a3?0时,数列an?是否成等差数列?证明你的结论.
【答案】(1)证明一个数列为等差数列,一般从等差数列定义出发:
??????????bn?1?bn?(an?1?2an?2)?(an?2an?1)?(an?1?an)?2(an?2?an?1)?d?2d??d,其中
d为等差数列?an?的公差(2)同(1),先根据关系式bn?an?2an?1,cn?1?an?2an?1?2解出an?bn?cn?1?1,再从等差数列定义出发2bn?1?cnbn?cn?1bn?1?bncn?cn?1d1d2?????,其中d1,d2分别为等差数222222an?1?an?列bn?,cn?的公差(3)探究性问题,可将条件向目标转化,一方面b1?a3?0,所以
??a1?2a2??a3,即a1?2a2?a3?0,另一方面2bn?1=bn+bn?2,所以an?2an?1+an+2?2an?3=2(an+1?2an?2),整理得
2an?1?an?an?2?2(2an?2?an?1?an?3),从而2an?1?an?an?2?0,即数列?an?成等差
数列.
试题解析:证明:(1)设数列an?的公差为d,
?
∵bn?an?2an?1,
∴bn?1?bn?(an?1?2an?2)?(an?2an?1)?(an?1?an)?2(an?2?an?1)?d?2d??d, ∴数列bn?是公差为?d的等差数列. ………………4分
?
(3)数列an?成等差数列. 解法1 设数列bn?的公差为d?, ∵bn?an?2an?1, ∴2bn?2an?2∴2bn?2nn?1nnn?1??an?1,∴2n?1bn?1?2n?1an?1?2nan,…,2b1?2a1?22a2,
bn?1???2b1?2a1?2n?1an?1,
2n?1设Tn?2b1?2b2??2bn?1?2nbn,∴2Tn?22b1???2nbn?1?2n?1bn,
2n?1两式相减得:?Tn?2b1?(2???2即Tn??2b1?4(2∴2n?1n?1?2n)d??2n?1bn,
?1)d??2n?1bn,∴?2b1?4(2n?1?1)d??2n?1bn?2a1?2n?1an?1,
an?1?2a1?2b1?4(2n?1?1)d??2n?1bn?2a1?2b1?4d??2n?1(bn?d?),
2a1?2b1?4d??(bn?d?), ………………12分 n?122a1?2b1?4d?2a1?2b1?4d???(b?d)??b1, 22323∴an?1?令n?2,得a3?
∵b1?a3?0,∴
2a1?2b1?4d??b1?a3?0,∴2a1?2b1?4d??0, 32
∴an?1??(bn?d?),∴an?2?an?1??(bn?1?d?)?(bn?d?)??d?,
∴数列an?(n?2)是公差为?d?的等差数列, ………………14分 ∵bn?an?2an?1,令n?1,a1?2a2??a3,即a1?2a2?a3?0,
∴数列an?是公差为?d?的等差数列. ………………16分
??
∵数列bn?是等差数列,∴2bn?1?bn?bn?2?0,
∴2an?1?an?an?2?2(2an?2?an?1?an?3), ………………14分 ∵a1?2a2?a3?0,∴2an?1?an?an?2?0,
∴数列an?是等差数列. ………………16分 【解析】
【考点】等差数列定义
20.(本题满分16分) 已知函数f(x)?lnx???1,g(x)?ax?b. x(1)若函数h(x)?f(x)?g(x)在(0,??)上单调递增,求实数a的取值范围;
(2) 若直线g(x)?ax?b是函数f(x)?lnx?1图象的切线,求a?b的最小值; x2(3)当b?0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2?2e. (取e为2.8,取ln2为0.7,取2为1.4) 【答案】(1)(??,0](2)?1.
(3)由题意知lnx1?11?ax1,lnx2??ax2, x1x2两式相加得lnx1x2?x1?x2xx?x?a(x1?x2),两式相减得ln2?12?a(x2?x1), x1x2x1x1x2x2xln2x1x?xx111即,∴,
??alnx1x2?12?(?)(x1?x2)x2?x1x1x2x1x2x2?x1x1x2ln即lnx1x2?2(x1?x2)x1?x2x2?ln, …………12分
x1x2x2?x1x12x22(t?1)(t?1)?1,(t?1),?0, 不妨令0?x1?x2,记t?令F(t)?lnt?则F?(t)?x1t?1t(t?1)∴F(t)?lnt?2(t?1)2(t?1)?F(1)?0, 在(1,??)上单调递增,则F(t)?lnt?t?1t?1x22(x2?x1)2(x1?x2)x1?x2x22(t?1)ln?lnxx??ln?2, ∴lnt?,则,∴12x1x1?x2x1x2x2?x1x1t?1又lnx1x2?4x1x22(x1?x2)44?lnx1x2??lnx1x2??2lnx1x2?,
x1x2x1x2x1x2x1x2∴2lnx1x2?42?2,即lnx1x2??1, x1x2x1x2212?G(x)??2?0,∴G(x)在(0,??)上单调递增, x?0,则时,
xxx令G(x)?lnx?又ln2e?212?ln2?1??0.85?1,
e2e2222?1?ln2e?,则x1x2?2e,即x1x2?2e. x1x22e∴G(x1x2)?lnx1x2?………………16分
【解析】(1)由题意得对?x?0,h?(x)?1111?2?a?0恒成立,即a?(?2)min,xxxx11111(x,lnx?)a??2,??0a?0∵,∴(2)设切点0,由导数几何意义得02xxx0xx00
b?lnx0?21?1,令?t?0,则a?b??(t)??lnt?t2?t?1,问题就转化为利用导x0x01t(2t?1)(t?1)得当t?(0,1)时,??(t)?0,?(t)在(0,1)t数求最值:由??(t)???2t?1?上单调递减;当t?(1,??)时,??(t)?0,?(t)在(1,??)上单调递增,
∴a?b??(t)??(1)??1,故a?b的最小值为?1.(3)本题较难,难点在于构造函数.先根据等量关系消去参数a:由题意知lnx1?11?ax1,lnx2??ax2,两式相加得x1x2lnx1x2?x1?x2xx?x?a(x1?x2),两式相减得ln2?12?a(x2?x1),即x1x2x1x1x2x2x11,
??ax2?x1x1x2lnx22(x1?x2)x1?x2x2lnxx??ln,为x?xx1∴,即121lnx1x2?12?(?)(x1?x2)x1x2x2?x1x1x1x2x2?x1x1x2ln研究等式右边范围构造函数F(t)?lnt?2(t?1)(t?1),易得F(t)在(1,??)上单调递增,t?1因此当0?x1?x2时,有lnx22(x2?x1)x2(x2?x1)??0即ln2?,所以x1x1?x2x1x1?x2lnx1x2?2(x1?x2)?2,再利用基本不等式进行放缩:
x1x24x1x22(x1?x2)44?lnx1x2??lnx1x2??2lnx1x2?,
x1x2x1x2x1x2x1x22?lnx1x2?即lnx1x2?22?1,再一次构造函数G(x)?lnx?,易得其在(0,??)上单调递增,x1x2x22?1?ln2e??G(2e),因此x1x2?2e,即x1x22e而G(x1x2)?lnx1x2?x1x2?2e2.