数字图像处理第三版中文答案冈萨雷斯 下载本文

内容发布更新时间 : 2024/12/22 17:01:38星期一 下面是文章的全部内容请认真阅读。

如对您有帮助,请购买打赏,谢谢您!

第二章

2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)

对应点的视网膜图像的直径x可通过如下图题2.1所示的相似三角形几何关系得到,即 解得x=0.06d。根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小??327.5成像单元的阵列。假设成像单元之间的间距相等,这表明在总长为1.5 mm(直径) 的一条线上有655个成像单元和654个成像单元间隔。则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m。 如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。换句话说, 眼睛不能检测到以下直径的点:

2x?0.06d?1.1?10?6m,即d?18.3?10?6m

2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。2.1节描述的视觉过程在这种情况下起什么作用?

亮度适应。

2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。美国的商用交流电频率是77HZ。问这一波谱分量的波长是多少?

光速c=300000km/s ,频率为77Hz。

因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5

根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为: i(x,y)?Ke?[(x?x0)2?(y?y0)2] 的光源照射。为简单起见,假设区域的反射是恒定

的,并等于1.0,令K=255。如果图像用k比特的强度分辨率进行数字化,并且眼睛可检测相邻像素间8种灰度的突变,那么k取什么值将导致可见的伪轮廓? 解:题中的图像是由: 一个截面图像见图(a)。如果图像使用k比特的强度分辨率,然后我们有情况见图(b),其中?G??255?1?2。因为眼睛可检测4种灰度突变,因此,?G?4?2562,K= 6。

kk也就是说,2小于64的话,会出现可见的伪轮廓。 2.9

k如对您有帮助,请购买打赏,谢谢您!

(a) 传输数据包(包括起始比特和终止比特)为:N=n+m=10bits。对于一幅2048×2048 大小的图像,其总的数据量为M??2048??N,故以56K 波特的速率传输所需时间为:

2(b) 以3000K 波特的速率传输所需时间为 2.10

解:图像宽高比为16:9,且水平电视线的条数是1080条,则:竖直电视线为1080×(16/9)=1920 像素/线。

由题意可知每场用1s 的1/60,则:每帧用时2×1/60=1/30 秒。

则该系统每1/30 秒的时间形成一幅1920×1080 分辨率的红、绿、蓝每个像素都有8 比特的图像。又因为90min 为5400 秒,故储存90min 的电视节目所需的空间是: 2.11

解:p和q如图所示:

(a) S1 和S2不是4 邻接,因为q 不在N4?p?集中。 (b) S1 和S2是8 连接,因为q 在N8?p?集。

(c) S1 和S2是m 连接,因为q 在集合ND?p?中,且N4?p??N4?q?没有V 值的像素。 2.12 提出将一个像素宽度的8通路转换为4通路的一种算法。

解:找出一个像素点的所有邻接情况,将对角元素转化成相应的四邻接元素。如下图所示: 2.13 提出将一个像素宽度的m通路转换为4通路的一种算法。

解:把m 通道转换成4 通道仅仅只需要将对角线通道转换成4 通道,由于m 通道是8 通道与4 通道的混合通道,4 通道的转换不变,将8 通道转换成4 通道即可。 如图所示:

(1) 4 邻域关系不变

(2) 8 领域关系变换如下图所示

2.15 (没答案,自己做的,看对不对)

(1) 在V={0,1,2}时,p和q之间通路的D4距离为8(两种情况均为8),D8距离为4,Dm

如对您有帮助,请购买打赏,谢谢您!

距离为6。

(2) 在V={2,3,4}时,p和q之间通路的D4距离为∞,D8距离为4,Dm距离为5。

p 和q 之间不存在4 邻接路径,因为不同时存在从p 到q 像素的4 毗邻像素和具备V 的值,情况如图(a)所示。p 不能到达q。 2.16 解:

(a) 点p(x,y)和点q(s,t)两点之间最短4 通路如下图所示,其中假设所有点沿路径V。 路径段长度分别为x?s和y?t,由D4距离的定义可知,通路总长度| X-S|+| Y-T|,(这个距离是独立于任何点之间可能存在的任何路径),显然D4距离是等于这两点间的最短4通路。所以当路径的长度是x?s?y?t,满足这种情况。 (b) 路径可能未必惟一的,取决于V 和沿途的点值。 2.18

由公式H [f(x,y)]=g(x,y)(2.6-1),

让H表示相邻的和操作,让S1和S2表示两个不同子图像区的小值,并让S1 + S2表示相应的总数S1和S2像素,如在 注意到附近的大小(即像素数字)并没有随着这总和的改变而改变。H计算像素值是一个给定的区域。然后, 意味着:

(1)在每个子区域里乘像素,

(2)从aS1到bS2每个像素值相加(首先产生一个单独的子区域)

(3)在单独的子图像区域里计算所有像素值的和。让ap1和ap2表示两个任意(但相应的)像素aS1?bS2。

然后我们可以依据Eq.(2.6 - 1),表明H是一个线性算子。 2.19(两个版本答案,一个意思)

(1)中值ζ表示,数集的一半数值比它大,另一半比它小。 一个简单的例子能够表明,Eq.(2.6 - 1)的平均算子操作。

让 S1 = {1,-2,3}, S2 = {4,5, 6}, a = b = 1. 在这种情况下,H是平均算子。 然后有H(S1 + S2)=中值{ 5,3,9 } = 5,S1 + S2是S1和S2的和。

接下来,计算H(S1)=中值{ 1、-2、3 } =1和H(S2)=中值{ 4、5、6 } = 5。

然后,从H(aS1 + bS2)≠aH(S1)+ bH(S2),因此,子图像区域S中值的算子是非线性的。 (2) 2.20