2020年中考数学复习 专题五 相交线与平行线 学案 无答案 下载本文

内容发布更新时间 : 2024/11/16 21:02:15星期一 下面是文章的全部内容请认真阅读。

教学课题 中考总复习:相交线与平行线 1、对顶角和邻补角的判断及性质的应用,垂线及垂线段。 教学目标 2、同位角、内错角、同旁内角的识别。 3、平行线的判定及性质的应用。 1、理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。 2、理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。 3、理解点到直线的距离的意义,能度量点到直线的距离。 4、掌握基本事实:过一点有且只有一条直线与已知直线垂直。 5、识别同位角、内错角、同旁内角。 教学重点与难点 6、理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 7、掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。 8、掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。 9、能用三角尺和直尺过已知直线外一点画这条直线的平行线。 10、探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。 11、了解平行于同一条直线的两条直线平行。 教学过程 【基础知识重温】 1、邻补角与对顶角 邻补角:有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。 对顶角:有一个公共顶点,一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 注:对顶角相等。如:∠1和∠2互为邻补角,∠2和∠3互为对顶角。 2、垂线 (1)定义:两直线相交所构成的四个角中有一个角是直角时,我们就说这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,它们的交点叫做垂足。 31O2

(2)性质:在同一平面内,过一点有且只有一条直线与已知直线垂直; 连接直线外一点与直线上各点的所有线段中,垂线段最短。 (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 3、同位角、内错角、同旁内角如图∠1和∠4是同位角,∠3和∠4是内错角,∠2和∠4是同旁内角 4、平行线 1(1)定义:在平面内不相交的两条直线叫做平行线。 (2)平行公理 经过直线外一点,有且只有一条直线与这条直线平行; 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 (3)平行线的性质 两直线平行,同位角相等,内错角相等,同旁内角互补。 两条平行线被第三条直线所截,同位角相等; 两条平行线被第三条直线所截,内错角相等; 两条平行线被第三条直线所截,同旁内角互补。 (4)平行线的判定 324同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行; 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

【例题分析】 1、如图,∠1=150°,则∠2= ,∠3= ,∠4= 。 ED1B2134AC2O (第1题图) (第2题图) 2、如图,AB、CD相交于点O,OE⊥AB,∠1=50°,则∠2= ,∠BOC= 。 3、下面的命题正确的是( ) A、内错角互补,两直线平行 B、同旁内角互补,两直线平行 C、两直线平行,同位角互补 D、两直线平行,同旁内角相等 4、下列说法正确的是( ) A、两直线平行,同旁内角相等 B、互补的两个角一定是邻补角 C、同位角相等 D、垂直于同一直线的两直线平行 5、如图,已知直线a∥b,∠1=35°,则∠2的度数是( ) 12ab A、35° B、55° C、145° D、135° 6、如图,已知直线a∥b,∠1=85°,则∠2=( ) c12ab A、85° B、95° C、105° D、135° 7、如图,已知直线a∥b,∠1=130°,则∠2=( ) c1ab2 A、130° B、50° C、65° D、100° 8、如图,AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数为( ) CA1ODBE A、110° B、100° C、90° D、80°