内容发布更新时间 : 2024/11/13 9:39:40星期一 下面是文章的全部内容请认真阅读。
勾股定理的逆定理 测试试题
一、基础加巩固
1.满足下列条件的三角形中,不是直角三角形的是( )
A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5
2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值).
图18-2-4 图18-2-5 图18-2-6
3.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________. 4.如图18-2-6,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=形状.
5.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?
1AD,试判断△EFC的4
图18-2-7
6.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.
二、综合·应用
7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?
- 1 -
8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.
求证:△ABC是直角三角形.
图18-2-8
9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论.
图18-2-9
10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形. 问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______; ②错误的原因是______________ ; ③本题的正确结论是_________ _.
11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.
12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.
求:四边形ABCD的面积.
图18-2-10
- 2 -
参考答案
一、基础·巩固
1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.
由A得有一个角是直角;B、C满足勾股定理的逆定理,所以应选D. 2.解:过D点作DE∥AB交BC于E,
则△DEC是直角三角形.四边形ABED是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°. 又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm.
根据勾股定理的逆定理得,DE=102?52?53 cm.∴AB=102?52?53 cm.
3.思路分析:因为△ABC是Rt△,所以BC2+AC2=AB2,即S1+S2=S3,所以S3=12,因为S3=AB2,所以AB=S3?12?23.
4.思路分析:分别计算EF、CE、CF的长度,再利用勾股定理的逆定理判断即可.
解:∵E为AB中点,∴BE=2.∴CE2=BE2+BC2=22+42=20. 同理可求得,EF2=AE2+AF2=22+12=5,CF2=DF2+CD2=32+42=25. ∵CE2+EF2=CF2,∴△EFC是以∠CEF为直角的直角三角形.
5.思路分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.
解:在△ABD中,AB2+AD2=32+42=9+16=25=BD2,所以△ABD为直角三角形,∠A =90°. 在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
所以△BDC是直角三角形,∠CDB =90°.因此这个零件符合要求.
6.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可.
证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边. ∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形. 二、综合·应用
7.思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形(例2已证). 8.思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.
证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2 =AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.
9.思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.
- 3 -